Infinite-dimensional α -divergence minimisation for Variational Inference

Kamélia Daudel

Télécom Paris, Institut Polytechnique de Paris kamelia.daudel@telecom-paris.fr

MCQMC2020

Joint work with Randal Douc, François Portier and François Roueff

Goal : build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^* ,$$

- such that one iteration leads to a systematic decrease of a certain criterion (α -divergence),
- applicable to Bayesian Inference problems (Variational Inference).

Goal : build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^* ,$$

- such that one iteration leads to a systematic decrease of a certain criterion (α-divergence),
- applicable to Bayesian Inference problems (Variational Inference).

Goal : build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^* ,$$

- such that one iteration leads to a systematic decrease of a certain criterion (α-divergence),
- applicable to Bayesian Inference problems (Variational Inference).

Goal : build an iterative scheme

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^* ,$$

- such that one iteration leads to a systematic decrease of a certain criterion (α-divergence),
- applicable to Bayesian Inference problems (Variational Inference).

Outline

1 Problem statement

- **2** The (α, Γ) -descent
- **3** Numerical Experiments

Outline

1 Problem statement

- **2** The (α, Γ) -descent
- **3** Numerical Experiments

Variational Inference in a nutshell

 Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

Problem : for many important models the marginal likelihood $p(\mathscr{D})$ is untractable.

 \rightarrow <u>Variational Inference</u> : inference is seen as an optimisation problem.

1 Posit a variational family q, where $q \in Q$.

② Fit q to obtain the best approximation to the posterior density

$$q^{\star} = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q} || \mathbb{P}) ,$$

where D is the a divergence (e.g the Kullback-Leibler).

Variational Inference in a nutshell

 Bayesian statistics : compute / sample from the posterior density of the latent variables y given the data D

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})}$$
.

Problem : for many important models the marginal likelihood $p(\mathscr{D})$ is untractable.

- \rightarrow <u>Variational Inference</u> : inference is seen as an optimisation problem.
 - **1** Posit a variational family q, where $q \in Q$.
 - **2** Fit q to obtain the best approximation to the posterior density

$$q^{\star} = \operatorname{arginf}_{q \in \mathcal{Q}} D(\mathbb{Q} || \mathbb{P}) ,$$

where D is the a divergence (e.g the Kullback-Leibler).

Variational Inference within the α -divergence family

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, }\nu \text{ is a }\sigma\text{-finite measure on }(\mathsf{Y},\mathcal{Y}).\\ \mathbb{Q} \text{ and }\mathbb{P}: \ \mathbb{Q} \preceq \nu, \ \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \ \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}). \end{array}$

 $\alpha\text{-divergence}$ between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D})\nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

$$\rightarrow \text{ We can get rid of } p(\mathscr{D}) \text{ in the optimisation } ! q^* = \operatorname{arginf}_{q \in \mathcal{Q}} \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y, \mathscr{D}) \ .$$

$$\rightarrow f_{\alpha} \text{ is convex } !$$

Variational Inference within the α -divergence family

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, }\nu \text{ is a }\sigma\text{-finite measure on }(\mathsf{Y},\mathcal{Y}).\\ \mathbb{Q} \text{ and }\mathbb{P}: \ \mathbb{Q} \preceq \nu, \ \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \ \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}). \end{array}$

 $\alpha\text{-divergence}$ between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D})\nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

$$\begin{array}{l} \rightarrow \text{ We can get rid of } p(\mathscr{D}) \text{ in the optimisation } ! \\ q^{\star} = \operatorname{arginf}_{q \in \mathcal{Q}} \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y, \mathscr{D}) \ . \\ \rightarrow f_{\alpha} \text{ is convex } ! \end{array}$$

Variational Inference within the α -divergence family

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, }\nu \text{ is a }\sigma\text{-finite measure on }(\mathsf{Y},\mathcal{Y}).\\ \mathbb{Q} \text{ and }\mathbb{P}: \ \mathbb{Q} \preceq \nu, \ \mathbb{P} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \ \frac{\mathrm{d}\mathbb{P}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}). \end{array}$

 $\alpha\text{-divergence}$ between $\mathbb Q$ and $\mathbb P$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D})\nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha} = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ 1 - u + u \log(u), & \text{if } \alpha = 1 \text{ (Forward KL)}, \\ u - 1 - \log(u), & \text{if } \alpha = 0 \text{ (Reverse KL)}. \end{cases}$$

 $\begin{array}{l} \rightarrow \text{ We can get rid of } p(\mathscr{D}) \text{ in the optimisation } ! \\ q^{\star} = \operatorname{arginf}_{q \in \mathcal{Q}} \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \quad \text{with } p(y) = p(y,\mathscr{D}) \ . \\ \rightarrow f_{\alpha} \text{ is convex } ! \end{array}$

Our approach

• Usually in Variational Inference : parametric family

 $\{y\mapsto k_\theta(y)\ :\ \theta\in\mathsf{T}\}$.

• Let us consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) \; : \; \mu \in \mathsf{M} \right\} \; ,$$

M : subset of $M_1(T)$, the set of probability measures on (T, \mathcal{T}) . \rightsquigarrow Example : Mixture models $\mu = \sum_{j=1}^J \lambda_j \delta_{\theta_j}$.

Optimisation problem

- $\mu k(y) = \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta, y)$, where $K : (\theta, A) \mapsto \int_A k(\theta, y)\nu(\mathrm{d}y)$ is a Markov transition kernel on $\mathsf{T} \times \mathcal{Y}$ with kernel density k
- p : measurable positive function on (Y, \mathcal{Y})

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \underbrace{\int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)}_{:= \Psi_{\alpha}(\mu)}$$

Kamélia Daudel (Télécom Paris)

Our approach

• Usually in Variational Inference : parametric family

 $\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$.

• Let us consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) \; : \; \mu \in \mathsf{M} \right\} \; ,$$

 $\begin{array}{l} \mathsf{M}: \text{subset of } \mathrm{M}_1(\mathsf{T}) \text{, the set of probability measures on } (\mathsf{T},\mathcal{T}) \text{.} \\ \rightsquigarrow \mathsf{Example}: \text{ Mixture models } \mu = \sum_{j=1}^J \lambda_j \delta_{\theta_j} \text{.} \end{array}$

Optimisation problem

- $\mu k(y) = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y)$, where $K : (\theta, A) \mapsto \int_A k(\theta, y) \nu(\mathrm{d}y)$ is a Markov transition kernel on $\mathsf{T} \times \mathcal{Y}$ with kernel density k
- p : measurable positive function on (Y, \mathcal{Y})

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \underbrace{\int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)}_{:= \Psi_{\alpha}(\mu)}$$

Our approach

• Usually in Variational Inference : parametric family

 $\{y \mapsto k_{\theta}(y) : \theta \in \mathsf{T}\}$.

• Let us consider a broader approximating family

$$\left\{ y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k_{\theta}(y) \; : \; \mu \in \mathsf{M} \right\} \; ,$$

 $\begin{array}{l} \mathsf{M}: \text{subset of } \mathrm{M}_1(\mathsf{T}) \text{, the set of probability measures on } (\mathsf{T},\mathcal{T}) \text{.} \\ \rightsquigarrow \mathsf{Example}: \text{ Mixture models } \mu = \sum_{j=1}^J \lambda_j \delta_{\theta_j} \text{.} \end{array}$

Optimisation problem

- $\mu k(y) = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y)$, where $K : (\theta, A) \mapsto \int_A k(\theta, y) \nu(\mathrm{d}y)$ is a Markov transition kernel on $\mathsf{T} \times \mathcal{Y}$ with kernel density k
- p : measurable positive function on (Y, \mathcal{Y})

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \underbrace{\int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)}_{:=\Psi_{\alpha}(\mu)}$$

Kamélia Daudel (Télécom Paris)

Outline

1 Problem statement

- **2** The (α, Γ) -descent
- **3** Numerical Experiments

The (α, Γ) -descent

Optimisation problem

$$\operatorname{arginf}_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu) \quad \text{with} \quad \Psi_{\alpha}(\mu) := \int_{\mathsf{Y}} f_{\alpha} \left(\frac{\mu k(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y)$$

Algorithm

Let $\mu_1 \in M_1(\mathsf{T})$ such that $\Psi_{\alpha}(\mu_1) < \infty$. We define the sequence of probability measures $(\mu_n)_{n \in \mathbb{N}^{\star}}$ iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \in \mathbb{N}^{\star} .$$
 (1)

Algorithm 1: Exact (α, Γ) -descent one-step transition

$$\underbrace{ \text{Expectation step}}_{\mathbf{Y}} : \quad b_{\mu,\alpha}(\theta) = \int_{\mathbf{Y}} k(\theta, y) f'_{\alpha} \left(\frac{\mu k(y)}{p(y)} \right) \nu(\mathrm{d}y)$$

$$\underbrace{ \text{Iteration step}}_{\mathbf{Y}} : \quad \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))}$$

Monotonicity

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y)\nu(\mathrm{d} y) < \infty$.

(A2) The function $\Gamma : \Delta_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$\left[(\alpha - 1)(v - \kappa) + 1 \right] \left(\log \Gamma \right)'(v) + 1 \ge 0 .$$

Theorem 1

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then, the two following assertions hold. (1) We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leq \Psi_{\alpha}(\mu)$. (2) We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

Monotonicity

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y) < \infty$.

(A2) The function $\Gamma : \Delta_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \ge 0.$$

Theorem 1

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then, the two following assertions hold. (1) We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leq \Psi_{\alpha}(\mu)$. (2) We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

Monotonicity

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, p(y) > 0 and $\int_{\mathsf{Y}} p(y)\nu(\mathrm{d}y) < \infty$.

(A2) The function $\Gamma : \Delta_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \ge 0.$$

Theorem 1

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then, the two following assertions hold. • We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) \leq \Psi_{\alpha}(\mu)$.

2 We have $\Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) = \Psi_{\alpha}(\mu)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$.

Examples satisfying (A2)

(A2) The function $\Gamma : \Delta_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$\left[(\alpha - 1)(v - \kappa) + 1\right] \left(\log \Gamma\right)'(v) + 1 \ge 0.$$

1 Entropic MD : $\eta \in (0, 1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v} \; .$$

② Power descent : $\eta \in (0, 1]$, $(\alpha - 1)\kappa \ge 0$ and $\alpha \ne 1$ $\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}.$ Examples satisfying (A2)

(A2) The function $\Gamma : \Delta_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \ge 0.$$

 $\bullet \text{ Entropic MD}: \eta \in (0,1], \, \kappa \in \mathbb{R} \text{ and } \alpha = 1$

$$\Gamma(v) = e^{-\eta v} \; .$$

② Power descent : $\eta \in (0, 1]$, $(\alpha - 1)\kappa \ge 0$ and $\alpha \ne 1$ $\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}.$ Examples satisfying (A2)

(A2) The function $\Gamma : \Delta_{\alpha} \to \mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$\left[(\alpha - 1)(v - \kappa) + 1\right] \left(\log \Gamma\right)'(v) + 1 \ge 0.$$

 $\bullet \text{ Entropic MD}: \eta \in (0,1], \, \kappa \in \mathbb{R} \text{ and } \alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

.

2 Power descent :
$$\eta \in (0, 1]$$
, $(\alpha - 1)\kappa \ge 0$ and $\alpha \ne 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}.$$

Limiting behavior

Table 1: Examples of allowed	(Γ,κ) in the (α,Γ) -descent
------------------------------	---

Divergence considered	Possible choice of (Γ, κ)	
Forward KL ($\alpha = 1$)	$\Gamma(v) = e^{-\eta v}, \eta \in (0,1)$	any κ
α -divergence with $\alpha \in \mathbb{R} \setminus \{1\}$	$\Gamma(v) = e^{-\eta v}, \eta \in (0, \frac{1}{ \alpha - 1 b _{\infty,\alpha} + 1})$	any κ
	$\alpha > 1, \ \Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}, \ \eta \in (0, 1]$	$\kappa > 0$
	$\alpha < 1, \Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}, \eta \in (0, 1]$	$\kappa\leqslant 0$

ightarrow Convergence towards the optimum value at a O(1/N) rate

 \rightarrow Convergence towards the optimum value

Limiting behavior

Table 1: Examples of allowed	(Γ,κ) in the (α,Γ) -descent
------------------------------	---

Divergence considered	Possible choice of (Γ, κ)	
Forward KL ($\alpha = 1$)	$\Gamma(v) = e^{-\eta v}, \eta \in (0,1)$	any κ
α -divergence with $\alpha \in \mathbb{R} \setminus \{1\}$	$\Gamma(v) = e^{-\eta v}, \eta \in (0, \frac{1}{ \alpha - 1 b _{\infty,\alpha} + 1})$	any κ
	$\alpha > 1, \ \Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}, \ \eta \in (0, 1]$	$\kappa > 0$
	$\alpha < 1, \Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}, \eta \in (0, 1]$	$\kappa\leqslant 0$

- \rightarrow Convergence towards the optimum value at a O(1/N) rate
- \rightarrow Convergence towards the optimum value

An O(1/N) convergence rate?

× β-smooth assumption not satisfied in general for the α -divergence (e.g Gaussian family).

✓ Quantify the improvement in terms of the variance of $b_{\mu, \alpha}$

$$\frac{L_{\alpha,1}}{2} \mathbb{V}\mathrm{ar}_{\mu} \left(b_{\mu,\alpha} \right) \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) ,$$

where $L_{\alpha,1} := \inf_{v \in \Delta_{\alpha}} \{ [(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \} \times \inf_{v \in \Delta_{\alpha}} - \Gamma'(v) \}$

 \rightsquigarrow Projected Gradient descent : f is $\beta\text{-smooth}$ on $\mathbb R$

$$\forall u \in \mathbb{R}, \quad \frac{1}{\beta} \|\nabla f(u)\|^2 \leq f(u) - f\left(u - \frac{1}{\beta} \nabla f(u)\right).$$

An O(1/N) convergence rate?

× β-smooth assumption not satisfied in general for the α -divergence (e.g Gaussian family).

✓ Quantify the improvement in terms of the variance of $b_{\mu, \alpha}$

$$\frac{L_{\alpha,1}}{2} \mathbb{V} \mathrm{ar}_{\mu} \left(b_{\mu,\alpha} \right) \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) ,$$

where $L_{\alpha,1} := \inf_{v \in \Delta_{\alpha}} \{ [(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \} \times \inf_{v \in \Delta_{\alpha}} - \Gamma'(v).$

 \rightsquigarrow Projected Gradient descent : f is $\beta\text{-smooth}$ on $\mathbb R$

$$\forall u \in \mathbb{R}, \quad \frac{1}{\beta} \|\nabla f(u)\|^2 \leqslant f(u) - f\left(u - \frac{1}{\beta} \nabla f(u)\right)$$

An O(1/N) convergence rate?

× β-smooth assumption not satisfied in general for the α -divergence (e.g Gaussian family).

✓ Quantify the improvement in terms of the variance of $b_{\mu, \alpha}$

$$\frac{L_{\alpha,1}}{2} \mathbb{V}\mathrm{ar}_{\mu} \left(b_{\mu,\alpha} \right) \leqslant \Psi_{\alpha}(\mu) - \Psi_{\alpha} \circ \mathcal{I}_{\alpha}(\mu) ,$$

where $L_{\alpha,1} := \inf_{v \in \Delta_{\alpha}} \{ [(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \} \times \inf_{v \in \Delta_{\alpha}} - \Gamma'(v).$

 \rightsquigarrow Projected Gradient descent : f is $\beta\text{-smooth}$ on $\mathbb R$

$$\forall u \in \mathbb{R}, \quad \frac{1}{\beta} \| \nabla f(u) \|^2 \leqslant f(u) - f\left(u - \frac{1}{\beta} \nabla f(u)\right).$$

Mixture models and (α, Γ) -descent

$$S_{J} = \left\{ \boldsymbol{\lambda} = (\lambda_{1}, ..., \lambda_{J}) \in \mathbb{R}^{J} : \forall j \in \{1, ..., J\}, \ \lambda_{j} \ge 0 \text{ and } \sum_{j=1}^{J} \lambda_{j} = 1 \right\}.$$

Let $\theta_{1}, ..., \theta_{J} \in \mathsf{T}$ be fixed and denote
$$\mu_{\boldsymbol{\lambda}} = \sum_{j=1}^{J} \lambda_{j} \delta_{\theta_{j}} \quad \text{with} \quad \boldsymbol{\lambda} \in \mathcal{S}_{J}.$$

Then, $\mu_{n} = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}} (\mu_{\boldsymbol{\lambda}}) \text{ is of the form } \mu_{n} = \sum_{j=1}^{J} \lambda_{j,n} \delta_{\theta_{j}} \text{ with}$
$$\left\{ \begin{aligned} \boldsymbol{\lambda}_{1} = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_{n},\alpha}(\theta_{j}) + \kappa)}{\sum_{j=1}^{J} \lambda_{j,n} \Gamma(b_{\mu_{m},\alpha}(\theta_{j}) + \kappa)} . \end{aligned} \right.$$
(2)

- Exploitation step which requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$ (as opposed to Importance Sampling)
- In practice, we will use

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_\alpha \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})}\right),$$

with $Y_{1,n}, ..., Y_{M,n}$ drawn independently from $\mu_n k$.

Mixture models and (α, Γ) -descent

$$S_{J} = \left\{ \boldsymbol{\lambda} = (\lambda_{1}, ..., \lambda_{J}) \in \mathbb{R}^{J} : \forall j \in \{1, ..., J\}, \ \lambda_{j} \ge 0 \text{ and } \sum_{j=1}^{J} \lambda_{j} = 1 \right\}.$$

Let $\theta_{1}, ..., \theta_{J} \in \mathsf{T}$ be fixed and denote
$$\mu_{\boldsymbol{\lambda}} = \sum_{j=1}^{J} \lambda_{j} \delta_{\theta_{j}} \quad \text{with} \quad \boldsymbol{\lambda} \in \mathcal{S}_{J}.$$

Then, $\mu_{n} = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}} (\mu_{\boldsymbol{\lambda}}) \text{ is of the form } \mu_{n} = \sum_{j=1}^{J} \lambda_{j,n} \delta_{\theta_{j}} \text{ with} \quad \left\{ \begin{aligned} \boldsymbol{\lambda}_{1} = \boldsymbol{\lambda} \\ \lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_{n},\alpha}(\theta_{j}) + \kappa)}{\sum_{j=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_{n},\alpha}(\theta_{j}) + \kappa)} . \end{aligned} \right\}.$ (2)

- Exploitation step which requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$ (as opposed to Importance Sampling)
- In practice, we will use

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_\alpha \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})}\right),$$

with $Y_{1,n}, ..., Y_{M,n}$ drawn independently from $\mu_n k$.

Mixture models and (α, Γ) -descent

$$S_{J} = \left\{ \boldsymbol{\lambda} = (\lambda_{1}, ..., \lambda_{J}) \in \mathbb{R}^{J} : \forall j \in \{1, ..., J\}, \ \lambda_{j} \ge 0 \text{ and } \sum_{j=1}^{J} \lambda_{j} = 1 \right\}.$$

Let $\theta_{1}, ..., \theta_{J} \in \mathbb{T}$ be fixed and denote
$$\mu_{\boldsymbol{\lambda}} = \sum_{j=1}^{J} \lambda_{j} \delta_{\theta_{j}} \quad \text{with} \quad \boldsymbol{\lambda} \in \mathcal{S}_{J} .$$

Then, $\mu_{n} = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n}(\mu_{\boldsymbol{\lambda}})$ is of the form $\mu_{n} = \sum_{j=1}^{J} \lambda_{j,n} \delta_{\theta_{j}}$ with
$$\left\{ \begin{array}{l} \boldsymbol{\lambda}_{1} = \boldsymbol{\lambda} \\ \boldsymbol{\lambda}_{1} = \boldsymbol{\lambda} \end{array} \right\}$$

$$\left\{\lambda_{j,n+1} = \frac{\lambda_{j,n}\Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^J \lambda_{i,n}\Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)} \right\}.$$

- Exploitation step which requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$ (as opposed to Importance Sampling)
- In practice, we will use

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^M \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_\alpha \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})}\right),$$

with $Y_{1,n}, ..., Y_{M,n}$ drawn independently from $\mu_n k$.

Outline

1 Problem statement

- **2** The (α, Γ) -descent
- **3** Numerical Experiments

• Framework

Kernel: Gaussian transition kernel k_{h_t} with bandwidth h_t .

$$\left\{ y \mapsto \mu_{\lambda} k_{h_t}(y) = \sum_{j=1}^{J_t} \lambda_j k_{h_t}(y - \theta_{j,t}) : \lambda \in \mathcal{S}_{J_t}, (\theta_{j,t})_{1 \leqslant j \leqslant J_t} \in \mathsf{T}^{J_t} \right\}$$

 $h_t \propto J_t^{-1/(4+d)} \mbox{,}$ where d is the dimension of the latent space.

(1) Exploitation step Optimise λ using the Mixture (α, Γ) -descent (with Monte Carlo approximation of $b_{\mu,\alpha}$).

2 Exploration step Sample $(\theta_{j,t+1})_{1 \leq j \leq J_{t+1}}$ according to $\mu_{\lambda} k_{h_t}$.

• Toy example

 $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})]$

• Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

• Framework

Kernel: Gaussian transition kernel k_{h_t} with bandwidth h_t .

$$\left\{ y \mapsto \mu_{\lambda} k_{h_t}(y) = \sum_{j=1}^{J_t} \lambda_j k_{h_t}(y - \theta_{j,t}) : \lambda \in \mathcal{S}_{J_t}, (\theta_{j,t})_{1 \leq j \leq J_t} \in \mathsf{T}^{J_t} \right\}$$

 $h_t \propto J_t^{-1/(4+d)} \mbox{,}$ where d is the dimension of the latent space.

• Exploitation step Optimise λ using the Mixture (α, Γ) -descent (with Monte Carlo approximation of $b_{\mu,\alpha}$).

2 Exploration step Sample $(\theta_{j,t+1})_{1 \leq j \leq J_{t+1}}$ according to $\mu_{\lambda} k_{h_t}$.

- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

٠

• Framework

Kernel: Gaussian transition kernel k_{h_t} with bandwidth h_t .

$$\left\{ y \mapsto \mu_{\boldsymbol{\lambda}} k_{h_t}(y) = \sum_{j=1}^{J_t} \lambda_j k_{h_t}(y - \theta_{j,t}) : \boldsymbol{\lambda} \in \mathcal{S}_{J_t}, (\theta_{j,t})_{1 \leq j \leq J_t} \in \mathsf{T}^{J_t} \right\}$$

 $h_t \propto J_t^{-1/(4+d)} \mbox{,}$ where d is the dimension of the latent space.

• Exploitation step Optimise λ using the Mixture (α, Γ) -descent (with Monte Carlo approximation of $b_{\mu,\alpha}$).

2 Exploration step Sample $(\theta_{j,t+1})_{1 \leq j \leq J_{t+1}}$ according to $\mu_{\lambda} k_{h_t}$.

• Toy example

 $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})]$

• Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features) ٠

• Framework

Kernel: Gaussian transition kernel k_{h_t} with bandwidth h_t .

$$\left\{ y \mapsto \mu_{\boldsymbol{\lambda}} k_{h_t}(y) = \sum_{j=1}^{J_t} \lambda_j k_{h_t}(y - \theta_{j,t}) : \boldsymbol{\lambda} \in \mathcal{S}_{J_t}, (\theta_{j,t})_{1 \leq j \leq J_t} \in \mathsf{T}^{J_t} \right\}$$

 $h_t \propto J_t^{-1/(4+d)} \mbox{,}$ where d is the dimension of the latent space.

• Exploitation step Optimise λ using the Mixture (α, Γ) -descent (with Monte Carlo approximation of $b_{\mu,\alpha}$).

2 Exploration step Sample $(\theta_{j,t+1})_{1 \leq j \leq J_{t+1}}$ according to $\mu_{\lambda} k_{h_t}$.

• Toy example

 $p(y) = Z \times [0.5 \mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})]$

• Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

• Framework

Kernel: Gaussian transition kernel k_{h_t} with bandwidth h_t .

$$\left\{ y \mapsto \mu_{\boldsymbol{\lambda}} k_{h_t}(y) = \sum_{j=1}^{J_t} \lambda_j k_{h_t}(y - \theta_{j,t}) : \boldsymbol{\lambda} \in \mathcal{S}_{J_t}, (\theta_{j,t})_{1 \leq j \leq J_t} \in \mathsf{T}^{J_t} \right\}$$

 $h_t \propto J_t^{-1/(4+d)} \mbox{,}$ where d is the dimension of the latent space.

• Exploitation step Optimise λ using the Mixture (α, Γ) -descent (with Monte Carlo approximation of $b_{\mu,\alpha}$).

2 Exploration step Sample $(\theta_{j,t+1})_{1 \leq j \leq J_{t+1}}$ according to $\mu_{\lambda} k_{h_t}$.

• Toy example

$$p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -s\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; s\boldsymbol{u_d}, \boldsymbol{I_d})]$$

Bayesian Logistic Regression

Covertype dataset (581,012 data points and 54 features)

Toy Example: Mirror Descent vs Power Descent

We compare:

- <u>0.5-Mirror descent</u> : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- <u>0.5-Power descent</u> : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J = M = 100, initial weights: [1/J, ..., 1/J], N = 10, T = 20.

Figure: Average Renyi-Bound for the 0.5-Power and 0.5-Mirror descent computed over 100 replicates with $\eta_0=0.5.$

Toy Example: Mirror Descent vs Power Descent

We compare:

- <u>0.5-Mirror descent</u> : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 0.5$,
- <u>0.5-Power descent</u> : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

J = M = 100, initial weights: [1/J, ..., 1/J], N = 10, T = 20.

Figure: Average Renyi-Bound for the 0.5-Power and 0.5-Mirror descent computed over 100 replicates with $\eta_0 = 0.5$.

Kamélia Daudel (Télécom Paris)

Bayesian Logistic Regression

We compare :

- <u>0.5-Power descent</u>
- <u>AIS</u> (Adaptive Importance Sampling)

$$N = 1, T = 500, J_0 = M_0 = 20$$

 $J_{t+1} = M_{t+1} = J_t + 1$, initial weights: $[1/J_t, ..., 1/J_t]$.

Figure: Average Accuracy and Log-likelihood computed over 100 replicates for the 0.5-Power descent ($\eta_0 = 0.05$) and the AIS algorithm.

Outline

1 Problem statement

- **2** The (α, Γ) -descent
- **3** Numerical Experiments

Conclusion

The $(\alpha,\Gamma)\text{-descent}$

- performs an update of measures
 - sufficient conditions on (α, Γ) leading to a systematic decrease
 - includes Entropic Mirror Descent
 - convergence to an optimum and O(1/N) convergence rates,
- can be applied to density approximation
 - handles the case of Mixture Models for any kernel K
 - requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$
 - empirical benefit of using the Power descent.

Kamélia Daudel, Randal Douc and François Portier (2020).
 Infinite-dimensional gradient-based descent for alpha-divergence minimisation.
 https://hal.telecom-paris.fr/hal-02614605.
 Kamélia Daudel, Randal Douc, François Portier and François Roueff (2019).

The *f*-Divergence Expectation Iteration Scheme. https://arxiv.org/abs/1909.12239.

Conclusion

The $(\alpha,\Gamma)\text{-descent}$

- performs an update of measures
 - sufficient conditions on (α,Γ) leading to a systematic decrease
 - includes Entropic Mirror Descent
 - convergence to an optimum and O(1/N) convergence rates,
- can be applied to density approximation
 - handles the case of Mixture Models for any kernel ${\boldsymbol K}$
 - requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$
 - empirical benefit of using the Power descent.

 Kamélia Daudel, Randal Douc and François Portier (2020).
 Infinite-dimensional gradient-based descent for alpha-divergence minimisation. https://hal.telecom-paris.fr/hal-02614605.
 Kamélia Daudel, Randal Douc, François Portier and François Roueff (2019).
 The *f*-Divergence Expectation Iteration Scheme. https://arxiv.org/abs/1909.1223

Conclusion

The $(\alpha,\Gamma)\text{-descent}$

- performs an update of measures
 - sufficient conditions on (α,Γ) leading to a systematic decrease
 - includes Entropic Mirror Descent
 - convergence to an optimum and O(1/N) convergence rates,
- can be applied to density approximation
 - handles the case of Mixture Models for any kernel K
 - requires no information on the distribution of $\{\theta_1, ..., \theta_J\}$
 - empirical benefit of using the Power descent.

 Kamélia Daudel, Randal Douc and François Portier (2020).
 Infinite-dimensional gradient-based descent for alpha-divergence minimisation. https://hal.telecom-paris.fr/hal-02614605.

[2] Kamélia Daudel, Randal Douc, François Portier and François Roueff (2019).

The *f*-Divergence Expectation Iteration Scheme. https://arxiv.org/abs/1909.12239.