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Introduction

• We consider a model with joint distribution pθ(x, z) parameterized by θ,
where x is an observation and z is a latent variable valued in Rd

• Posterior density of the latent variable z given the observation x

pθ(z|x) =
pθ(x, z)∫
pθ(x, z)dz

• What we would like : compute / sample from the posterior density

• Key example : maximize the marginal log likelihood w.r.t. θ

ℓ(θ;x) := log pθ(x) = log

(∫
pθ(x, z)dz

)

∇θℓ(θ;x) =
∇θ(

∫
pθ(x, z)dz)∫

pθ(x, z)dz
=

∫
∇θ(pθ(x, z))dz∫

pθ(x, z)dz
=

∫
pθ(x, z)∇θ(log pθ(x, z))dz∫

pθ(x, z)dz

=

∫
pθ(z|x)∇θ(log pθ(x, z))dz

• Problem : for many important models, we can only evaluate pθ(z|x) up
to the marginal likelihood

∫
pθ(x, z)dz
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Variational bounds

• Variational bounds are surrogate objective functions to the marginal log
likelihood that are more amenable to optimization.

• They involve a variational family of probability densities Q

e.g. Q =
{
z 7→ qϕ(z|x) : ϕ ∈ RL

}
• Example : Evidence Lower BOund (ELBO)

ELBO(θ, ϕ;x) =

∫
qϕ(z|x) log (wθ,ϕ(z;x)) dz where wθ,ϕ(z;x) =

pθ(x, z)

qϕ(z|x)

ELBO(θ, ϕ;x) = ℓ(θ;x)−D(KL)(qϕ(·|x)||pθ(·|x)) where

D(KL)(qϕ(·|x)||pθ(·|x)) =
∫
Y
qϕ(z|x) log

(
qϕ(z|x)
pθ(z|x)

)
dz (Exclusive KL)

so that ELBO(θ, ϕ;x) ≤ ℓ(θ;x)

“Traditional Variational Inference” : θ is constant, the goal is
to minimize the exclusive KL divergence ⇔ maximizing the ELBO

Optimisation w.r.t. (θ, ϕ): Variational Auto-Encoder (VAE) framework
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Training with the ELBO

1 Unbiased Monte Carlo (MC) estimator of the ELBO

ELBO(θ, ϕ;x) =

∫
qϕ(z|x) log (wθ,ϕ(z;x)) dz

≈ 1

N

N∑
i=1

log (wθ,ϕ(zi;x)) , zi ∼ qϕ(·|x), i = 1 . . . N

2 Reparameterization trick z = f(ε, ϕ;x) ∼ qϕ(·|x) where ε ∼ q

3 Reparameterized gradient of the ELBO:

∇θ,ϕELBO(ϕ;x) =

∫
q(ε)∇θ,ϕ (logwθ,ϕ(f(ε, ϕ;x);x)) dε

4 Unbiased SGD w.r.t. (θ, ϕ)

∇θ,ϕELBO(ϕ;x) ≈ 1

N

N∑
i=1

∇θ,ϕ (logwθ,ϕ(f(εi, ϕ;x);x)) , εi ∼ q, i = 1 . . . N
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Question

ELBO(θ, ϕ;x) = ℓ(θ;x)−D(KL)(qϕ(·|x)||pθ(·|x))

Question Can we change the regularization term?
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Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 7 / 63



Outline

1 Introduction

2 The VR bound

3 The VR-IWAE bound

4 Study of the VR-IWAE bound

5 Application to VAEs

6 Study of the gradient(s) of the VR-IWAE bound

7 Conclusion
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The Variational Rényi (VR) bound

Variational Rényi (VR) bound (Li and Turner, NeurIPS 2016): for all α > 0 and ̸= 1

VR(α)(θ, ϕ;x) :=
1

1− α
log

(∫
qϕ(z|x)wθ,ϕ(z;x)

1−αdz

)
, wθ,ϕ(z;x) =

pθ(z, x)

qϕ(z|x)
= ℓ(θ;x)−D(α)(qϕ(·|x)||pθ(·|x))

where D(α)(qϕ(·|x)||pθ(·|x)) is Rényi’s α-divergence: for all α > 0 and ̸= 1

D(α)(qϕ(·|x)||pθ(·|x)) =
1

α− 1
log

(∫
qϕ(z|x)

(
qϕ(z|x)
pθ(z|x)

)α−1

dz

)

• We have that limα→1D
(α)(qϕ(·|x)||pθ(·|x)) = D(KL)(qϕ(·|x)||pθ(·|x))

Proof Set f(α) =
∫
qϕ(z|x)

(
qϕ(z|x)
pθ(z|x)

)α−1
dz

Then, f(1) = 1 and f ′(α) =
∫
qϕ(z|x) log

(
qϕ(z|x)
pθ(z|x)

)(
qϕ(z|x)
pθ(z|x)

)α−1
dz

lim
α→1

D(α)(qϕ(·|x)||pθ(·|x)) = lim
α→1

log f(α)− log f(1)

α− 1
=

f ′(1)

f(1)
= D(KL)(qϕ(·|x)||pθ(·|x))

• VR(α)(θ, ϕ;x) ≤ ℓ(θ;x), VR(0)(θ, ϕ;x) = ℓ(θ;x)

→ The VR bound generalizes the ELBO, interpolates between ℓ(θ;x) and the ELBO
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Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 9 / 63



The Variational Rényi (VR) bound
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Impact of α

VR(α)(θ, ϕ;x) = ℓ(θ;x)−D(α)(qϕ(·|x)||pθ(·|x))

• Question How does the regularization term behave?

• Example : D(α)(q||p) with p(z) = N (z; [0, 0], [[3,−2], [−2, 3]]) and
Q = {q : z 7→ N (z1;µ1, σ

2
1) N (z2;µ2, σ

2
2) : µ1, µ2 ∈ R, σ1, σ2 > 0}

Adapted from (Li and Turner, NeurIPS 2016)
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Training with the VR bound (Li and Turner, NeurIPS 2016)
1 MC estimator of the VR bound

VR(α)(θ, ϕ;x) =
1

1− α
log

(∫
qϕ(z|x)wθ,ϕ(z;x)

1−αdz

)
≈ 1

1− α
log

(
1

N

N∑
i=1

wθ,ϕ(zi;x)
1−α

)
, zi ∼ qϕ(·|x), i = 1 . . . N

2 Reparameterization trick z = f(ε, ϕ;x) ∼ qϕ(·|x) where ε ∼ q

3 Reparameterized gradient of the VR bound :

∇θ,ϕVR
(α)(θ, ϕ;x) = ∇θ,ϕ

[
1

1− α
log

(∫
q(ε)wθ,ϕ(f(ε, ϕ;x);x)

1−αdε

)]
=

1

1− α

∫
q(ε)∇θ,ϕ

[
wθ,ϕ(f(ε, ϕ;x);x)

1−α
]
dε∫

q(ε)wθ,ϕ(f(ε, ϕ;x);x)1−αdε

=

∫
q(ε)wθ,ϕ(f(ε, ϕ;x);x)

−α∇θ,ϕ [wθ,ϕ(f(ε, ϕ;x);x)] dε∫
q(ε)wθ,ϕ(f(ε, ϕ;x);x)1−αdε

=

∫
q(ε)wθ,ϕ(z;x)

1−α∇θ,ϕ (logwθ,ϕ(f(ε, ϕ;x);x)) dε∫
q(ε)wθ,ϕ(z;x)1−αdε

4 SGD w.r.t. (θ, ϕ)

∇θ,ϕVR
(α)(θ, ϕ;x) ≈

N∑
i=1

wθ,ϕ(zi;x)
1−α∑N

j=1wθ,ϕ(zj ;x)1−α
∇θ,ϕ (logwθ,ϕ(f(εi, ϕ;x);x)) , εi ∼ q, i = 1 . . . N
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Some important comments

VR(α)(θ, ϕ;x) =
1

1− α
log

(∫
qϕ(z|x)wθ,ϕ(z;x)

1−αdz

)
≈ 1

1− α
log

(
1

N

N∑
i=1

wθ,ϕ(zi;x)
1−α

)
, zi ∼ qϕ(·|x), i = 1 . . . N

∇θ,ϕVR
(α)(θ, ϕ;x) =

∫
q(ε)wθ,ϕ(z;x)

1−α∇θ,ϕ (logwθ,ϕ(f(ε, ϕ;x);x)) dε∫
q(ε)wθ,ϕ(z;x)1−αdε

≈
N∑
i=1

wθ,ϕ(zi;x)
1−α∑N

j=1wθ,ϕ(zj ;x)1−α
∇θ,ϕ (logwθ,ϕ(f(εi, ϕ;x);x)) , εi ∼ q, i = 1 . . . N

→ Sanity check : ∇θ,ϕVR(1)(θ, ϕ;x) = ∇θ,ϕELBO(θ, ϕ;x)

→ Training with α < 1 lead to positive empirical results

→ However,

1 The VR bound can only be estimated using biased MC estimators

2 No theoretical justification as SGD with the VR bound resorts to biased
estimators on top of the reparameterization trick (unless α = 1)
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Problem 1

• Li and Turner (Theorem 2, NeurIPS 2016) looked into the properties of
the biased approximation of the VR bound

VR(α)(θ, ϕ;x) =
1

1− α
log

(∫
qϕ(z|x) wθ,ϕ(z;x)

1−α dz

)

≈ 1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 , zj ∼ qϕ(z|x), j = 1 . . . N

• More precisely, they investigated the expectation of the biased MC
approximation, i.e.

ℓ
(α)
N (θ, ϕ;x) :=

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

1 For all α ≤ 1 and all N ∈ N⋆

ELBO(θ, ϕ;x) ≤ ℓ
(α)
N (θ, ϕ;x) ≤ ℓ

(α)
N+1(θ, ϕ;x) ≤ VR(α)(θ, ϕ;x)

2 ℓ
(α)
N (θ, ϕ;x) → VR(α)(θ, ϕ;x) as N → ∞

Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 13 / 63



Problem 1

• Li and Turner (Theorem 2, NeurIPS 2016) looked into the properties of
the biased approximation of the VR bound

VR(α)(θ, ϕ;x) =
1

1− α
log

(∫
qϕ(z|x) wθ,ϕ(z;x)

1−α dz

)

≈ 1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 , zj ∼ qϕ(z|x), j = 1 . . . N

• More precisely, they investigated the expectation of the biased MC
approximation, i.e.

ℓ
(α)
N (θ, ϕ;x) :=

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

1 For all α ≤ 1 and all N ∈ N⋆

ELBO(θ, ϕ;x) ≤ ℓ
(α)
N (θ, ϕ;x) ≤ ℓ

(α)
N+1(θ, ϕ;x) ≤ VR(α)(θ, ϕ;x)

2 ℓ
(α)
N (θ, ϕ;x) → VR(α)(θ, ϕ;x) as N → ∞
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At this stage

• VR bound : interesting generalization of the ELBO
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1

1− α
log
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∫
q(ε)wθ,ϕ(z;x)

1−α∇θ,ϕ (logwθ,ϕ(f(ε, ϕ;x);x)) dε∫
q(ε)wθ,ϕ(z;x)1−αdε
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N∑
i=1

wθ,ϕ(zi;x)
1−α∑N

j=1wθ,ϕ(zj ;x)1−α
∇θ,ϕ (logwθ,ϕ(f(εi, ϕ;x);x)) , εi ∼ q, i = 1 . . . N

• Two problems :

1 The MC estimation of the VR bound is biased

→ Some control of the approximation error via

ℓ
(α)
N (θ, ϕ;x) :=

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

2 The SGD with the VR bound uses biased estimators
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An idea

ℓ
(α)
N (θ, ϕ;x) :=

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

Could this expectation be seen as a variational bound?

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets

Importance Weighted Auto-Encoders: Methodology and Asymptotics.
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The VR-IWAE bound
For all α ∈ [0, 1) and all N ∈ N⋆

ℓ
(α)
N (θ, ϕ;x) :=

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

The VR-IWAE bound is a lower bound on the marginal log likelihood that

1 Can be estimated using unbiased MC estimators

2 Leads to the same SGD procedure as the VR bound in the reparameterized
case, but this time using unbiased estimators

∇θ,ϕℓ
(α)
N (θ, ϕ;x)

=

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,ϕ(zj ;x)
1−α∑N

k=1wθ,ϕ(zk;x)1−α
∇θ,ϕ logwθ,ϕ(f(εj , ϕ;x);x)

dε1:N .

≈
N∑
j=1

wθ,ϕ(zj ;x)
1−α∑N

k=1wθ,ϕ(zk;x)1−α
∇θ,ϕ logwθ,ϕ(f(εj , ϕ;x);x), εj ∼ q, j = 1 . . . N

The VR-IWAE bound provides theoretical guarantees behind various VR-
bound gradient-based schemes previously proposed in the literature
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Special cases of the VR-IWAE bound
For all α ∈ [0, 1) and all N ∈ N⋆

ℓ
(α)
N (θ, ϕ;x) =

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

• The case α → 1

lim
α→1

ℓ
(α)
N (θ, ϕ;x) = ELBO(θ, ϕ;x)

• The case α = 0

ℓ
(0)
N (θ, ϕ;x) =

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)

 dz1:N

The VR-IWAE bound recovers the Importance Weighted Auto-encoder
(IWAE) bound (Burda et al., ICLR 2016) when α = 0

→ Extension of the ELBO also leading to positive empirical results

The VR-IWAE bound interpolates between the IWAE bound and the ELBO

It is the theoretically-sound extension of the IWAE bound originating from
the VR bound methodology
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At this stage

→ The VR-IWAE bound provides theoretical guarantees behind various
VR-bound gradient-based schemes previously proposed in the literature

→ It is the theoretically-sound extension of the IWAE bound originating from
the VR bound methodology, interpolates between the IWAE bound and the ELBO

Questions?

→ Question Can we understand the behavior of the VR-IWAE bound as a function
of α ∈ [0, 1) better?
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Quantity of interest

Variational gap

For all α ∈ [0, 1),

∆
(α)
N (θ, ϕ;x) := ℓ

(α)
N (θ, ϕ;x)− ℓ(θ;x)

=
1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

where wθ,ϕ(z1;x), . . . , wθ,ϕ(zN ;x) are the relative weights : for all z ∈ Rd,

wθ,ϕ(z;x) :=
wθ,ϕ(z;x)

EZ∼qϕ (wθ,ϕ(Z;x))
=

wθ,ϕ(z;x)

pθ(x)
=

pθ(z|x)
qϕ(z|x)

,

NB : we will drop the dependency in x in wθ,ϕ(z;x) for convenience
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Part I
N goes to infinity and d is fixed in the variational gap
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N goes to infinity and d is fixed in the variational gap

→ Maddison et al. (NeurIPS 2017) followed by Domke and Sheldon (NeurIPS
2018) looked into the variational gap for the IWAE bound (α = 0)

Informally, Domke and Sheldon (Theorem 3, NeurIPS 2018) states that

∆
(0)
N (θ, ϕ;x) = − γ20

2N
+ o

(
1

N

)
where γ0 is the variance of the relative weights, i.e.

γ20 := VZ∼qϕ(·|x)(wθ,ϕ(Z))

→ Comments :

• N is very beneficial to reduce ∆
(0)
N (θ, ϕ;x) (goes to 0 at a fast 1/N rate)

• Question What about ∆
(α)
N (θ, ϕ;x), α ∈ [0, 1)?
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Main result when N → ∞ and d is fixed

Theorem 1

Let α ∈ [0, 1), denote w
(α)
θ,ϕ(z) = wθ,ϕ(z)

1−α/EZ∼qϕ(·|x)(wθ,ϕ(Z)1−α) for all

z ∈ Rd and γ2α = (1− α)−1VZ∼qϕ(·|x)(w
(α)
θ,ϕ(Z)). Then, under “some

conditions”, we have:

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
.

→ Two main terms :

1 A term going to zero at a fast 1/N rate that depends on γ2α

2 An error term VR(α)(θ, ϕ;x)− ℓ(θ;x) [decreases away from 0 as α
increases]

The hyperparameter α balances between these two terms meaning that a proper
tuning of α may be beneficial in practice

→ “some conditions”

• generalize the conditions from Domke and Sheldon (2018)

• do not get more restrictive as α increases, motivating α ∈ (0, 1)

• one of them controls γ2α

To the best of our knowledge, first result shedding light on how α may play a
role in Rényi’s α-divergence VI
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Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 24 / 63



Main result when N → ∞ and d is fixed

Theorem 1

Let α ∈ [0, 1), denote w
(α)
θ,ϕ(z) = wθ,ϕ(z)

1−α/EZ∼qϕ(·|x)(wθ,ϕ(Z)1−α) for all

z ∈ Rd and γ2α = (1− α)−1VZ∼qϕ(·|x)(w
(α)
θ,ϕ(Z)). Then, under “some

conditions”, we have:

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
.

→ Two main terms :

1 A term going to zero at a fast 1/N rate that depends on γ2α

2 An error term VR(α)(θ, ϕ;x)− ℓ(θ;x) [decreases away from 0 as α
increases]

The hyperparameter α balances between these two terms meaning that a proper
tuning of α may be beneficial in practice

→ “some conditions”

• generalize the conditions from Domke and Sheldon (2018)

• do not get more restrictive as α increases, motivating α ∈ (0, 1)

• one of them controls γ2α

To the best of our knowledge, first result shedding light on how α may play a
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role in Rényi’s α-divergence VI
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Example

Example 1 : Log-normal distribution of the relative weights

Let σ > 0, S1, . . . , SN be i.i.d. normal r.v and assume that the distribution of
the relative weights wθ,ϕ(z1), . . . , wθ,ϕ(zN ) is log-normal of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

Then, for all α ∈ [0, 1),

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
with

VR(α)(θ, ϕ;x)− ℓ(θ;x) = −ασ2d

2
and γ2α =

exp
[
(1− α)2σ2d

]
− 1

1− α
.

→ Sanity check : E(wθ,ϕ) = E(exp(−σ2d
2 − σ

√
dS1)) = 1

→ Gaussian example Set pθ(z|x) = N (z; θ, Id) and qϕ(z|x) = N (z;ϕ, Id),
with θ = 0 · ud and ϕ = ud, where ud is the d-dimensional vector whose
coordinates are all equal to 1. Then σ = 1.

Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 25 / 63



Example

Example 1 : Log-normal distribution of the relative weights

Let σ > 0, S1, . . . , SN be i.i.d. normal r.v and assume that the distribution of
the relative weights wθ,ϕ(z1), . . . , wθ,ϕ(zN ) is log-normal of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

Then, for all α ∈ [0, 1),

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
with

VR(α)(θ, ϕ;x)− ℓ(θ;x) = −ασ2d

2
and γ2α =

exp
[
(1− α)2σ2d

]
− 1

1− α
.

→ Sanity check : E(wθ,ϕ) = E(exp(−σ2d
2 − σ

√
dS1)) = 1

→ Gaussian example Set pθ(z|x) = N (z; θ, Id) and qϕ(z|x) = N (z;ϕ, Id),
with θ = 0 · ud and ϕ = ud, where ud is the d-dimensional vector whose
coordinates are all equal to 1. Then σ = 1.
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Gaussian example and Theorem 1 empirically
• ∆

(α)
N (θ, ϕ;x) is estimated using the unbiased MC estimator

1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 , zj ∼ qϕ(·|x), j = 1 . . . N

• Theorem 1 is represented through functions of the form:

c 7→ −αd

2
−

exp
[
(1− α)2d

]
− 1

2(1− α)N
+

c

N
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Example 1 revisited

Example 1 : Log-normal distribution of the relative weights

Let σ > 0, S1, . . . , SN be i.i.d. normal r.v and assume that the distribution of
the relative weights wθ,ϕ(z1), . . . , wθ,ϕ(zN ) is log-normal of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

Then, for all α ∈ [0, 1),

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
with

VR(α)(θ, ϕ;x)− ℓ(θ;x) = −ασ2d

2
and γ2α =

exp
[
(1− α)2σ2d

]
− 1

1− α
.

→ Theorem 1 may not capture what is happening in high dimensions
i.e. we may never use N large enough in high-dimensional settings for the asymp-
totic regime to kick in

→ Question Analysis as both d and N go to infinity? ∆
(α)
N,d(θ, ϕ;x)
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Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 27 / 63



Example 1 revisited

Example 1 : Log-normal distribution of the relative weights

Let σ > 0, S1, . . . , SN be i.i.d. normal r.v and assume that the distribution of
the relative weights wθ,ϕ(z1), . . . , wθ,ϕ(zN ) is log-normal of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

Then, for all α ∈ [0, 1),

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
with

VR(α)(θ, ϕ;x)− ℓ(θ;x) = −ασ2d

2
and γ2α =

exp
[
(1− α)2σ2d

]
− 1

1− α
.

→ Theorem 1 may not capture what is happening in high dimensions
i.e. we may never use N large enough in high-dimensional settings for the asymp-
totic regime to kick in

→ Question Analysis as both d and N go to infinity? ∆
(α)
N,d(θ, ϕ;x)
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Part II
N and d go to infinity in the variational gap
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N, d → ∞ in the variational gap

→ Key intuition : it is typically possible to approximate the distribution of the
relative weights by a log-normal distribution of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, Si ∼ N (0, 1), i = 1 . . . N.

→ Theoretical study in two steps :

1 Log-normal case : d,N → ∞ with logN
d → 0

2 Approximate log-normal case : d,N → ∞ with logN
d1/3

→ 0
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Part II.1
Log-normal case
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Main result in the log-normal case

Theorem 2

Let S1, . . . , SN be i.i.d. normal random variables. Further assume that

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

with σ > 0. Then, for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d→0

∆
(α)
N,d(θ, ϕ;x) +

dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))
= 0.

→ Informally

∆
(α)
N,d(θ, ϕ;x) ≈ −dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))
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2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))

→ Comparison with Theorem 1

∆
(α)
N,d(θ, ϕ;x) = −α · σ

2d

2
−

exp
[
(1− α)2σ2d

]
− 1

2(1− α)N
+ o

(
1

N

)
• While increasing N decreases the variational gap for N large enough, it

does so by a factor which is negligible before the term −dσ2/2

• This time, the term −dσ2/2 does not depend on α
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• This time, the term −dσ2/2 does not depend on α
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Main result in the log-normal case

Theorem 2

Let S1, . . . , SN be i.i.d. normal random variables. Further assume that

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

with σ > 0. Then, for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d→0

∆
(α)
N,d(θ, ϕ;x) +

dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))
= 0.

→ Informally

∆
(α)
N,d(θ, ϕ;x) ≈ −dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))

→ Weight collapse phenomenon : for all α ∈ [0, 1),

∆
(α)
N,d(θ, ϕ;x) ≈ ELBO(θ, ϕ;x)− ℓ(θ;x), as N, d → ∞ with logN

d → 0.
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Gaussian example revisited

Gaussian example

Set pθ(z|x) = N (z; θ, Id) and qϕ(z|x) = N (z;ϕ, Id), with θ = 0 · ud and
ϕ = ud, where ud is the d-dimensional vector whose coordinates are all equal to
1. Then

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, Si ∼ N (0, 1), i = 1 . . . N

with σ = 1.

• Theorem 1

∆
(α)
N,d(θ, ϕ;x) = −α · σ

2d

2
−

exp
[
(1− α)2σ2d

]
− 1

2(1− α)N
+ o

(
1

N

)
• Theorem 2

lim
N,d→∞

logN/d→0

∆
(α)
N,d(θ, ϕ;x) +

dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))
= 0.

Weight collapse phenomenon might occur even for simple examples!
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Gaussian example and Theorem 1 empirically
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Gaussian example and Theorem 2 empirically
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Part II.2
Approximate log-normal case
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Assumptions

Let S1, . . . , SN be such that :

Si =
1

σ
√
d

d∑
j=1

ξi,j , i = 1 . . . N

We will work under (A1) :

(A1) For all i = 1 . . . N ,

1 ξi,1, . . . , ξi,d are i.i.d. random variables which are absolutely continuous
with respect to the Lebesgue measure and satisfy E(ξi,1) = 0 and
V(ξi,1) = σ2 < ∞.

2 There exists K > 0 such that:

|E(ξki,1)| ≤ k!Kk−2σ2, k ≥ 3.

Approximate log-normal weights

logwθ,ϕ(zi) = − logE(exp(−σ
√
dS1))− σ

√
dSi, i = 1 . . . N

= −da− σ
√
dSi, i = 1 . . . N

with a := logE(exp(−ξ1,1))
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Main result in the approximate log-normal case

Theorem 3

Assume (A1) and that

logwθ,ϕ(zi) = −da− σ
√
dSi, i = 1 . . . N.

Then, a > 0 and for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0.

→ Weight collapse phenomenon : for all α ∈ [0, 1),

∆
(α)
N,d(θ, ϕ;x) ≈ ELBO(θ, ϕ;x)− ℓ(θ;x), as N, d → ∞ with logN

d1/3
→ 0.

The condition that N should grow at least exponentially with d has been replaced
by the less restrictive yet still stringent condition that N should grow at least
exponentially with d1/3.

→ NB : no dependency in α left in the asymptotic regime
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Linear Gaussian example

Linear Gaussian example (Rainforth et al., ICML 2018)

Set pθ(z) = N (z; θ, Id), pθ(x|z) = N (x; z, Id) with θ ∈ Rd, and
qϕ(z|x) = N (z;Ax+ b, 2/3 Id) with A = diag(ã) and ϕ = (ã, b) ∈ Rd × Rd.
Then, we can write

logwθ,ϕ(zi) = −da− σ
√
dSi, i = 1 . . . N.

with σ2 = 1
18 + 8

3λ
2 and a = λ2 + 1

6 + 1
2 log(3/4), where λ =

∥∥ θ+x
2

−Ax−b
∥∥

√
d

→ (A1) holds if we set (θ, ϕ) = (θ⋆, ϕ⋆)!
[θ⋆ = T−1

∑T
t=1 xt, ϕ

⋆ = (a⋆, b⋆) with a⋆ = 1
2ud, b⋆ = θ⋆

2 ]

• Theorem 1

∆
(α)
N,d(θ, ϕ;x) =

d

2

[
log

(
4

3

)
+

1

1− α
log

(
3

4− α

)]
− (4− α)d(15− 6α)−

d
2 − 1

2(1− α)N
+ o

(
1

N

)
• Theorem 3

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0

The choice of the variational approximation qϕ(·|x) matters a lot!
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Linear Gaussian example and Theorem 1 empirically
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Linear Gaussian example and Theorem 3 empirically
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Linear Gaussian example and Theorem 3 empirically
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Linear Gaussian example and Theorem 3 empirically
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At this stage

Quantity of interest : variational gap

∆
(α)
N (θ, ϕ;x) := ℓ

(α)
N (θ, ϕ;x)− ℓ(θ;x), α ∈ [0, 1)

→ Two complementary studies

1 When N → ∞ and the dimension of the latent space d is fixed

This analysis is tailored for low to medium dimensions settings

2 When N, d → ∞ with (i) logN
d → 0 or (ii) logN

d1/3
→ 0

This analysis is tailored for high-dimensional settings

→ Question Can we apply what we have learnt to a scenario where the posterior
density is known up to a constant?
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From theory to practice

• ℓ
(α)
N (θ, ϕ;x) is estimated using the unbiased MC estimator

1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj)
1−α

 , zj ∼ qϕ(·|x), j = 1 . . . N

• Theorem 1

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)

becomes

ℓ
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− γ2α

2N
+ o

(
1

N

)
.

• Theorem 3 Assuming that the weights are approximately log-normal

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0

becomes

lim
N,d→∞

logN/d1/3→0

ℓ
(α)
N,d(θ, ϕ;x)−

[
ELBO(θ, ϕ;x) +

√
dσ
√

2 logN +O

(√
d log logN√

logN

)]
= 0
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1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj)
1−α

 , zj ∼ qϕ(·|x), j = 1 . . . N

• Theorem 1

∆
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
becomes

ℓ
(α)
N (θ, ϕ;x) = VR(α)(θ, ϕ;x)− γ2α

2N
+ o

(
1

N

)
.

• Theorem 3 Assuming that the weights are approximately log-normal

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0

becomes

lim
N,d→∞

logN/d1/3→0

ℓ
(α)
N,d(θ, ϕ;x)−

[
ELBO(θ, ϕ;x) +

√
dσ
√

2 logN +O

(√
d log logN√

logN

)]
= 0
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VAE on MNIST dataset

• More details about this framework in the afternoon lecture!

• Here, we only want to look at

1 the behavior of the relative weights

2 the behavior of the VR-IWAE bound
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VAE on MNIST dataset and Theorem 1
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VAE on MNIST dataset and Theorem 3
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At this stage

→ Two complementary analyses of the VR-IWAE bound that we verified on a
real-world scenario

1 Theorem 1 is tailored for low to medium dimensions settings

2 Theorem 3 is tailored for high-dimensional settings

Questions?

Question Can we say something about the gradient of the VR-IWAE bound as a
function of α ∈ [0, 1)?

Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 47 / 63



At this stage

→ Two complementary analyses of the VR-IWAE bound that we verified on a
real-world scenario

1 Theorem 1 is tailored for low to medium dimensions settings

2 Theorem 3 is tailored for high-dimensional settings

Questions?

Question Can we say something about the gradient of the VR-IWAE bound as a
function of α ∈ [0, 1)?
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Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 47 / 63



At this stage

→ Two complementary analyses of the VR-IWAE bound that we verified on a
real-world scenario

1 Theorem 1 is tailored for low to medium dimensions settings

2 Theorem 3 is tailored for high-dimensional settings

Questions?

Question Can we say something about the gradient of the VR-IWAE bound as a
function of α ∈ [0, 1)?
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Study of the gradient(s) of the VR-IWAE bound

Quantities of interest

• MC estimates of the reparameterized gradients of the VR-IWAE bound

δ
(α)
N (ϕℓ) =

∂

∂ϕℓ
log

 1

N

N∑
j=1

wθ,ϕ(f(εj , ϕ;x))
1−α

 , ℓ = 1 . . . L

δ
(α)
N (θℓ′) =

∂

∂θℓ′
log

 1

N

N∑
j=1

wθ,ϕ(f(εj , ϕ;x))
1−α

 , ℓ′ = 1 . . . L′

with ϕ = (ϕ1, . . . , ϕL), θ = (θ1, . . . , θL′)

• Signal-to-Noise Ratio

Letting X = (X1, . . . , XL) be a random vector of dimension L,

SNR[X] =

(
|E(X1)|√
V(X1)

, . . . ,
|E(XL)|√
V(XL)

)
.

Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 49 / 63



Study of the gradient(s) of the VR-IWAE bound

Quantities of interest

• MC estimates of the reparameterized gradients of the VR-IWAE bound

δ
(α)
N (ϕℓ) =

∂

∂ϕℓ
log

 1

N

N∑
j=1

wθ,ϕ(f(εj , ϕ;x))
1−α

 , ℓ = 1 . . . L

δ
(α)
N (θℓ′) =

∂

∂θℓ′
log

 1

N

N∑
j=1

wθ,ϕ(f(εj , ϕ;x))
1−α

 , ℓ′ = 1 . . . L′

with ϕ = (ϕ1, . . . , ϕL), θ = (θ1, . . . , θL′)

• Signal-to-Noise Ratio

Letting X = (X1, . . . , XL) be a random vector of dimension L,

SNR[X] =

(
|E(X1)|√
V(X1)

, . . . ,
|E(XL)|√
V(XL)

)
.
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SNR analysis in the reparameterized case

Theorem 4

Let α ∈ [0, 1). Define w̃j = wθ,ϕ(f(εj , ϕ;x)) and ẐN,α = N−1
∑N

j=1 w̃
1−α
j .

Assume that the eighth moments of w̃1−α
1 , ∂w̃1−α

1 /∂ϕℓ and ∂w̃1−α
1 /∂θℓ′ are

finite. Furthermore, assume that there exists some N ∈ N⋆ for which
E((1/ẐN,α)

4) < ∞. Lastly, assume that

∂V(w̃1−α
1 )/∂ϕℓ > 0, if α = 0

∂E(w̃1−α
1 )/∂ϕℓ ̸= 0, if α ∈ (0, 1)

and that ∂E(w̃1−α
1 )/∂θℓ′ ̸= 0. Then,

SNR[δ
(α)
N (ϕℓ)] =

{
Θ(
√

1/N) if α = 0,

Θ(
√
N) if α ∈ (0, 1)

SNR[δ
(α)
N (θℓ′)] = Θ(

√
N).

→ The IWAE case was already known from Rainforth et al. (ICML 2018)

→ Motivates α ∈ (0, 1)
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Doubly-reparameterized gradients

→ Introduced in Tucker (ICLR 2019) for the IWAE bound

Theorem 5

For all α ∈ [0, 1],

∂

∂ϕ
ℓ
(α)
N (θ, ϕ;x) =

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

hj(α)
∂

∂ϕ
logwθ,ϕ′(f(εj , ϕ;x))|ϕ′=ϕ

 dε1:N

with zj = f(εj , ϕ;x) for all j = 1 . . . J and

hj(α) = α
wθ,ϕ(zj)

1−α∑N
k=1wθ,ϕ(zk)1−α

+ (1− α)

(
wθ,ϕ(zj)

1−α∑N
k=1wθ,ϕ(zk)1−α

)2

.

An unbiased estimator of ∂ℓ
(α)
N (θ, ϕ;x)/∂ϕ is then given by

N∑
j=1

hj(α)
∂

∂ϕ
logwθ,ϕ′(f(εj , ϕ))|ϕ′=ϕ

where ε1, . . . , εN are i.i.d. samples generated from q and zj = f(εj , ϕ;x) for all
j = 1 . . . J .
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At this stage

• Setting α > 0 instead of α = 0 (IWAE bound) can improve on the SNR for
the reparameterized estimated gradients of the VR-IWAE bound

SNRϕℓ
=

{
Θ(
√

1/N) if α = 0 (Rainforth et al., ICML 2018),

Θ(
√
N) if α ∈ (0, 1)

SNRθℓ′ = Θ(
√
N)

• The doubly-reparameterized gradient estimators of the IWAE (Tucker et al.
ICLR 2019) generalize to the VR-IWAE bound
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SNR analysis for the Linear Gaussian example : ϕ

Reparameterized

Doubly-reparameterized
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SNR analysis for the Linear Gaussian example : ϕ (cont’d)

Reparameterized

Doubly-reparameterized
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SNR analysis for the Linear Gaussian example : ϕ (cont’d)

Reparameterized

Doubly-reparameterized
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SNR analysis for the Linear Gaussian example : θ
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SNR analysis for VAE with MNIST : ϕ

Reparameterized

Doubly-reparameterized
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SNR analysis for VAE with MNIST : θ
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Final plots
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Conclusion

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets

Importance Weighted Auto-Encoders: Methodology and Asymptotics.

1 We formalized and motivated the VR-IWAE bound
• Theoretically-sound extension of the IWAE bound (α = 0)
• Provides theoretical guarantees behind various VR bound-based schemes

proposed in the literature

2 We provided two complementary analyses of the VR-IWAE bound
• Shed light on the conditions behind the success or failure of the VR-IWAE

bound methodology
• Encompass the case of the IWAE bound

3 We looked into the gradient(s) of the VR-IWAE bound and found desirable
properties (SNR, doubly-reparameterized)

4 Empirical verification of our theoretical results
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Perspectives

Some open questions:

• Does the weight collapse behavior apply beyond the cases highlighted here?

• How does the weight collapse affect the gradient descent procedures?

• Can we use the fact that the VR-IWAE bound extends the IWAE bound?
(e.g. to build better gradient estimators / to enrich the variational family Q)

Thank you for your attention !
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• Kamélia Daudel and Randal Douc. Mixture weights optimisation for
alpha-divergence variational inference. In Advances in Neural Information
Processing Systems, 2021.

• Kamélia Daudel, Randal Douc, and François Portier. Infinite-dimensional
gradient-based descent for alpha-divergence minimisation. The Annals of
Statistics, 49(4):2250 - 2270, 2021a. doi: 10.1214/20-AOS2035.
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Kamélia Daudel (University of Oxford) · Variational bounds in Variational Inference: how to choose them? 62 / 63



References (cont’d)

• Jose Hernandez-Lobato, Yingzhen Li, Mark Rowland, Thang Bui, Daniel
Hernandez-Lobato, and Richard Turner. Black-box alpha divergence
minimization. In International Conference on Machine Learning, 2016.
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