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@ We consider a model with joint distribution pg(z, z) parameterized by 6,
where x is an observation and z is a latent variable valued in R¢

@® In that case, the marginal log-likelihood of z is given by
00052 = ogpofe) = 10g ( [ (e 2)a:)

® Goal : find 6 which best describes the observation x
0* = argmax, £(6; x)
(more generally 6* = argmax, S, £(6;2;))

® Problem : finding the optimal 6 via maximum likelihood estimation is
in general an intractable optimization problem
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Variational Inference (VI)

® |dea : construct variational bounds, i.e. surrogate objective functions to
the marginal log-likelihood that are more amenable to optimization.
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® |dea : construct variational bounds, i.e. surrogate objective functions to
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e Common examples :
— Evidence Lower BOund (ELBO) : rely on a variational probability density

do(z|z) parameterized by ¢
po(, 2)

ELBO(6, ¢; ) = /q¢(z\x) log (wg¢(2;x))dz  where wyg(z;x) = PNEES

with ELBO(6, ¢; z) < £(0; )
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Training procedure for the IWAE bound

« Reparameterization trick z = f(e, ¢;x) ~ qy(-|z) where e ~ ¢
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Training procedure for the IWAE bound

« Reparameterization trick z = f(e, ¢;x) ~ qy(-|z) where e ~ ¢

Reparameterized gradient estimator (Burda et al., 2016)
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al we, (25 T) 0
~ —]’ 10gw9¢(f(€7¢7 )’ )7 Ej~4q, .]:]-N
121 Yoy wop(zks ) 09 ! !

— Unbiased SGD steps w.r.t. (6,¢)
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Another interesting variational bound
The Variational Rényi (VR) bound (Li and Turner, 2016) : for all « € R\ {1},

ia log (/ 4o (2|2) wo (2 7)1 " dz)

~ log Zw9¢(zj,x) . zi~ge(tlz), j=1...N

L9, ¢;2) =
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with positive empirical results
¢ Recovers SGD with the IWAE bound for & = 0 (resp. ELBO for o = 1)
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Another interesting variational bound (cont'd)

ia log (/ 4p(2|7) wo (2 7)1 dz)

N
1 1 _ .
Mg los (N > wp gz )" a) vz~ qp(lT), j=1...N
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ol wa (255 2)1 0
%Z 9¢ L ng9¢(f(gj7¢7 )x)’ EjNQ7 ]:lN
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Another interesting variational bound (cont'd)

L0, 6:2) = iﬁ%(/%mwww@@kaw)
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— However

@ The VR bound can only be estimated using biased MC estimators

Kamélia Daudel (University of Oxford) - Challenges and Opportunities in Scalable a-divergence Variational Inference 8 / 37



Another interesting variational bound (cont'd)
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— However

@ The VR bound can only be estimated using biased MC estimators
® The VR bound does not recover the IWAE bound when o« = 0
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Another interesting variational bound (cont'd)

1
£00,052) = 1 1o ( [ autele) w0 dz)
~ 10g Z'UJH ,p(Z],l') I B q¢("$), j=1...N
9 19, g2 = S a(e) woo(z2)' ™ F5logwos(f(e, ¢iw)iw) de
0¢ A Ja(e) w9,¢(271)1 @ de
N
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;Zk | wog (25 x) 1 09 ! !
— However

@ The VR bound can only be estimated using biased MC estimators
® The VR bound does not recover the IWAE bound when o« = 0

© No theoretical justification as SGD with the VR bound resorts to biased
estimators on top of the reparameterization trick (unless o € {0,1})
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An idea

® Liand Turner (Theorem 2, 2016) further looked into the biased
approximation of the VR bound

(6, ¢5) = - f <102 ([ aslo) wnpleia)t-e dz)

T log ng¢ ziix)' |, zj~gg(zlz), j=1...N

Q
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® They investigated the expectation of the biased MC approximation, i.e.
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e.g. they showed that it is non-decreasing with N when o < 1.
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1
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® They investigated the expectation of the biased MC approximation, i.e.

1 N 1 N
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e.g. they showed that it is non-decreasing with N when o < 1.
® Question Could this expectation be seen as a variational bound?

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets
Importance Weighted Auto-Encoders: Methodology and Asymptotics.
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The VR-IWAE bound

For all & € [0,1) and all N € N*

N
o 1 —a
Z( 0,0;2) := 7//1_[% zi|z) log Nz;wg,d)(zj;m)l dzi.n
§=
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The VR-IWAE bound (cont'd)

— The VR-IWAE bound is the theoretically-sound extension of the IWAE
bound originating from the a-divergence VI methodology
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The VR-IWAE bound (cont'd)

— The VR-IWAE bound is the theoretically-sound extension of the IWAE
bound originating from the a-divergence VI methodology

— It provides theoretical guarantees behind various VR-bound gradient-based
schemes previously proposed in the a-divergence VI community
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The VR-IWAE bound (cont'd)

— The VR-IWAE bound is the theoretically-sound extension of the IWAE
bound originating from the a-divergence VI methodology

— It provides theoretical guarantees behind various VR-bound gradient-based
schemes previously proposed in the a-divergence VI community

— Other notable advantages of the VR-IWAE bound :

® Setting o > 0 instead of o = 0 (IWAE bound) can improve on the SNR for
the reparameterized estimated gradients of the VR-IWAE bound

SNRy, = O(VN)
{6(\/1/N) if & = 0 (Rainforth et al., 2018),

SNqub[/ = e(\/ﬁ) if a € (07 1)
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The VR-IWAE bound (cont'd)
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SNRy, = O(VN)
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The VR-IWAE bound (cont'd)

— The VR-IWAE bound is the theoretically-sound extension of the IWAE
bound originating from the a-divergence VI methodology

— It provides theoretical guarantees behind various VR-bound gradient-based
schemes previously proposed in the a-divergence VI community

— Other notable advantages of the VR-IWAE bound :
® Setting o > 0 instead of o = 0 (IWAE bound) can improve on the SNR for
the reparameterized estimated gradients of the VR-IWAE bound

SNRy, = O(VN)

SNR. — O(y/1/N) if @ =0 (Rainforth et al., 2018),
2 T e(WN)  ifae(0,1).

® The doubly-reparameterized gradient estimators of the IWAE generalize to
the VR-IWAE bound

— Motivates the use of o € [0, 1) in practice
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Outline

© Theoretical study of the VR-IWAE bound
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Overview

— Quantity of interest : variational gap
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NB : we will drop the dependency in x in Wy 4(2;x) for convenience
— Two complentary studies
@ When N — oo and the dimension of the latent space

¢ This analysis will be tailored for low to medium dimensions settings

® When N, d — oo with (1) &% — 0 or (ii) %65 — 0

< This analysis will be tailored for high-dimensional settings
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© Theoretical study of the VR-IWAE bound
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N goes to infinity and d is fixed

— Maddison et al. (2017) followed by Domke and Sheldon (2018) looked into
the variational gap for the IWAE bound (o = 0)
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Informally, Domke and Sheldon (2018, Theorem 3) states that

1

) 8
AN (8, ¢;x) = ,ﬁ +o (N)

where g is the variance of the relative weights, i.e.

V6 =V 2y (Wo,6(Z))
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the variational gap for the IWAE bound (o = 0)

Informally, Domke and Sheldon (2018, Theorem 3) states that

2 1
AP 0.050) =% +o ()

where g is the variance of the relative weights, i.e.
2 —
V0 = Vg, (Wo,6(2))

— Comments :
® N is very beneficial to reduce Agg)(ﬁ,qf); x) (goes to 0 at a fast 1/N rate)

e Question What about Ag\?)(ﬁ,qf); x), a €[0,1)7
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Main result

Let a € [0,1), denote w( )( ) = we,(2) " /Ezng, (wo,s(Z)' ) for all z € R?
and 72 = (1-a)” IVZN%(w( (Z)). Then, under “some conditions”, we have:

AR (0, 65) = L0, ¢;2) — U(0;2) - ;T‘i} +o (;z)
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@ A term going to zero at a fast 1/N rate that depends on ~2

@® An error term L (0, ¢; ) — £(0; ) [decreases away from 0 as « increases]

The hyperparameter « balances between these two terms meaning that a proper
tuning of o may be beneficial in practice

— “some conditions”
® generalize the conditions from Domke and Sheldon (2018)
® do not get more restrictive as « increases, motivates o € (0, 1)

® one of them controls 42
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Main result (cont'd)

 Theoren |

Let a € [0,1), denote Wy (2) = wo,p(2) '~ /Ezng, (wp,s(Z)'~*) for all 2 € R?

and 72 = (1—a)” 1VZN%(w (Z)) Then, under “some conditions”, we have:

A6, ¢5) = £)(0, ¢52) - aem——~w<$>

— To the best of our knowledge, first result shedding light on how o may play
a role in the the success of a-divergence VI.
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Main result (cont'd)

(Theorem .
Let a € [0,1), denote Wy (2) = wo,p(2) '~ /Ezng, (wp,s(Z)'~*) for all 2 € R?
and 72 = (1—a)” 1VZN%(w (Z)) Then, under “some conditions”, we have:

A6, ¢:2) = L6, ¢12) — 40 w)——+o<zlv>

— To the best of our knowledge, first result shedding light on how o may play
a role in the the success of a-divergence VI.

— Question Can we find some limitations to this approach?
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A key example

Log-normal distribution of the relative weights

Let 0 >0, S1,...,Sn bei.i.d. normal r.v and assume that the distribution of
the relative weights Wg (1), .. ., Wo,¢(2n) is log-normal of the form

_ o’d :
log We, (i) :—T—U\/;isi, i=1...N.
Then, for all @ € [0, 1),

A 0,612) = 0, 62) ~ 00:2) — I +0 (1)
with
exp [(1— a)?0%d] — 1
1-—o ’

2
L0, 612) — 1(0;) = —2TL and 2=

Kamélia Daudel (University of Oxford) - Challenges and Opportunities in Scalable a-divergence Variational Inference 20 / 37



A key example

Log-normal distribution of the relative weights

Let 0 >0, S1,...,Sn bei.i.d. normal r.v and assume that the distribution of
the relative weights Wg (1), .. ., Wo,¢(2n) is log-normal of the form

_ o’d :
log We, (i) :—T—U\/;isi, i=1...N.
Then, for all @ € [0, 1),

A 0,612) = 0, 62) ~ 00:2) — I +0 (1)
with
exp [(1— a)?0%d] — 1
1-—o ’

2
L0, 612) — 10;) = —2TL and 2=

Kamélia Daudel (University of Oxford) - Challenges and Opportunities in Scalable a-divergence Variational Inference 20 / 37



A key example

Log-normal distribution of the relative weights

Let 0 >0, S1,...,Sn bei.i.d. normal r.v and assume that the distribution of
the relative weights Wg (1), .. ., Wo,¢(2n) is log-normal of the form

_ o’d :
log We, (i) :—T—U\/;isi, i=1...N.
Then, for all @ € [0, 1),

A 0,612) = 0, 62) ~ 00:2) — I +0 (1)
with
exp [(1 — a)?0%d] — 1
1-—o ’

2
L0, 612) — 10;) = —2TL and 2=

Kamélia Daudel (University of Oxford) - Challenges and Opportunities in Scalable a-divergence Variational Inference 20 / 37



A key example

Log-normal distribution of the relative weights

Let 0 >0, S1,...,Sn bei.i.d. normal r.v and assume that the distribution of
the relative weights Wg (1), .. ., Wo,¢(2n) is log-normal of the form

_ o’d :
log We, (i) :—T—U\/;isi, i=1...N.
Then, for all @ € [0, 1),

A 0,612) = 0, 62) ~ 00:2) — I +0 (1)
with
exp [(1 — a)?0%d] — 1

1—a

2
L0, 612) — 10;) = —2TL and 2=

— Our theorem may not capture what is happening in high dimensions
i.e. we may never use IV large enough in high-dimensional settings for the asymp-
totic regime to kick in
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— Our theorem may not capture what is happening in high dimensions
i.e. we may never use IV large enough in high-dimensional settings for the asymp-
totic regime to kick in

— Question Analysis as both d and N go to infinity?
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i.e. we may never use IV large enough in high-dimensional settings for the asymp-
totic regime to kick in

—+ Question Analysis as both d and N go to infinity? AY,(0, ¢; )

Kamélia Daudel (University of Oxford) - Challenges and Opportunities in Scalable a-divergence Variational Inference 20 / 37



Outline

© Theoretical study of the VR-IWAE bound

Second study
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N,d — oo with either long —~ 0 or 13%/1;7 0

— Key intuition : it is typically possible to approximate the distribution of the
relative weights by a log-normal distribution of the form

2
d
log@97¢(zi)=f%fzf\/g5i7 SiNN(0,1)7 i=1...N.
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N,d — oo with either long —~ 0 or 13%/1;7 0

— Key intuition : it is typically possible to approximate the distribution of the
relative weights by a log-normal distribution of the form

2
d
logﬁgﬂ¢(zi)=f%fzf\/g5i7 SiNN(0,1)7 i=1...N.

— Theoretical study in two steps :

@® Log-normal case : d, N — oo with % —0
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log N
o — 0

N,d — oo with eithe

— Key intuition : it is typically possible to approximate the distribution of the
relative weights by a log-normal distribution of the form

2
d
log@97¢(zi)=f%fzf\/g5i7 SiNN(0,1)7 i=1...N.

— Theoretical study in two steps :

log N

@® Log-normal case : d, N — oo with —0

log N

® Approximate log-normal case : d, N — oo with —0
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Main result in the log-normal case

Let S,...,Sn bei.i.d. normal random variables. Further assume that
_ o%d .
1Og’LU07¢(Zi)=—T—O'\/gSi, i=1...N.
Then, for all o € [0,1), we have

2
. (a) . do” _ 2log N 1 2logN loglog N _
Ny, Ana#2) + = (1 N T1oa a2 T\ Vamen) ) T

log N/d—0
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— Previously, we had

2d 1-a)o?d] - 1
Aﬁz(9,¢;x)=—a~%—%+o<%>
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Main result in the log-normal case

Let S1,...,Sn bei.i.d. normal random variables. Further assume that
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Then, for all o € [0,1), we have

2
. (a) . do” _ 2log N 1 2logN loglog N _
Ny, Ana#2) + = (1 W T1a a2 O\ Vamerw) ) T

log N/d—0

— Previously, we had
2 2 2
@ (9 gra) . 0 _exp[l-a)%] -1 (1
Avall g5w) = —a- = 2(1— a)N Ty

® While increasing N decreases the variational gap for N large enough, it
does so by a factor which is negligible before the term —do?/2
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Main result in the log-normal case

Let S1,...,Sn bei.i.d. normal random variables. Further assume that
_ o%d .
10g’LU07¢(Zi)=—T—O'\/3Si, i=1...N.
Then, for all o € [0,1), we have

2
. (a) . do” _ 2log N 1 2logN loglog N _
Ny, Ana#2) + = (1 N T1oa a2 O\ Vamen) | T

log N/d—0

— Previously, we had

Aﬁiﬂ(e?q&; @) =—a 2 2(1 - a)N

o%d  exp[(1-a)’c?d] -1 . (;)

® While increasing N decreases the variational gap for N large enough, it
does so by a factor which is negligible before the term —do?/2
e This time, the term —do?/2 does not depend on «

— Weight collapse phenomenon : for all « € [0, 1),

A8, 61 2) ~ ELBO(8, ¢w) — €(6;), as N,d — oo with 122N — 0,
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Gaussian example

Gaussian example

Set py(z|z) = N (2;0,14) and g4(2) = N (2; ¢, I4), with @ = 0-ug and ¢ = uyg,
where w4 is the d-dimensional vector whose coordinates are all equal to 1. Then

2
d
log W 4 (2) = —"7 —oVdS;, Si~N(0,1), i=1...N

with o = 1.
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Set py(z|z) = N (2;0,14) and g4(2) = N (2; ¢, I4), with @ = 0-ug and ¢ = uyg,
where w4 is the d-dimensional vector whose coordinates are all equal to 1. Then

2
logwg,¢(zi):—%i—aﬁsi, SZ‘NN(O,I), i=1...N

with o = 1.
® Asymptotic result 1

o?d  exp[(1—a)20%d] -1 . ( 1 )
N

(@) o) — 0. 2%
Al ¢37) = ~a 2 2(1—a)N
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Set py(z|z) = N (2;0,14) and g4(2) = N (2; ¢, I4), with @ = 0-ug and ¢ = uyg,
where w4 is the d-dimensional vector whose coordinates are all equal to 1. Then

2
logwg,¢(zi):—%i—aﬁsi, SZ‘NN(O,I), i=1...N

with o = 1.
® Asymptotic result 1

() L) —
AR 6.00) = —a- 5 N

o?d  exp[(1—a)20%d] -1 1
2 20— a)N © ( )

® Asymptotic result 2

; () .
Nl(}glw A (0, dsz) +

E (172 210gN+ 1 210gN+O<loglogN>>
log’]V/dﬁO

do? 1—a do? Vdlog N
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Gaussian example

Gaussian example

Set py(z|z) = N (2;0,14) and g4(2) = N (2; ¢, I4), with @ = 0-ug and ¢ = uyg,
where w4 is the d-dimensional vector whose coordinates are all equal to 1. Then

2
logwg,¢(zi):—%i—aﬁsi, SZ‘NN(O,I), i=1...N

with o = 1.
® Asymptotic result 1

o?d  exp[(1—a)20%d] -1 . ( 1 )
N

(@) ) — .Y
A0, ¢;2) = ~a 2 2(1—a)N

® Asymptotic result 2

; lo? 2log N 1 2logN loglog N
lim A0, ¢0) + 2 (12 X)) =
N,(}E}ao N*d( 193) + 2 do? * 1—a do? V/dlog N
log N/d—0

— Weight collapse phenomenon might occur even for simple examples!
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Empirical verification
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Empirical verification (cont'd)
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Main result in the approximate log-normal case
(Al) Foralli=1...N,
® &1,...,& q areiid. random variables which are absolutely continuous
with respect to the Lebesgue measure and satisfy E(&; ;1) = 0 and
V(&) = 0% < o0.
@® There exists K > 0 such that:
IE(¢F)| < kIKF 202, k> 3.
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(Al) Foralli=1...N,
® &1,...,& q areiid. random variables which are absolutely continuous
with respect to the Lebesgue measure and satisfy E(&; ;1) = 0 and
V(&) = 0% < o0.
@® There exists K > 0 such that:
IE(¢F)| < kIKF 202, k> 3.

— Let S1,..., SN be such that :

d
1
S =—— i i=1...N.
O'\/gj;é.’]
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Main result in the approximate log-normal case
(Al) Foralli=1...N,
® &1,...,& q areiid. random variables which are absolutely continuous
with respect to the Lebesgue measure and satisfy E(&; ;1) = 0 and
V(&) = 0% < o0.
@® There exists K > 0 such that:
[E(¢F) < RIKF 262 k> 3.

— Let S1,..., SN be such that :

d
1
S =—— i i=1...N.
O_\/gjglfy]

Assume (A1). Set a := log E(exp(—&1,1)) and further assume that
logWp ¢(2i) = —da — oV/dS;, i=1...N.
Then, a > 0 and for all a € [0,1), we have

. (a) o o [2log N loglog N _
N}égoo Ay (0, 832) +da <1 o \/ S o NI 0.

log N/d'/3—0

Kamélia Daudel (University of Oxford) - Challenges and Opportunities in Scalable a-divergence Variational Inference 27 / 37



Main result in the approximate log-normal case
(Al) Foralli=1...N,
® &1,...,& q areiid. random variables which are absolutely continuous
with respect to the Lebesgue measure and satisfy E(&; ;1) = 0 and
V(&) = 0% < o0.
@® There exists K > 0 such that:
[E(¢F) < RIKF 262 k> 3.

— Let S1,..., SN be such that :

d
1
S =—— i i=1...N.
O_\/gjglfy]

Assume (A1). Set a := log E(exp(—&1,1)) and further assume that
logWp ¢(2i) = —da — oV/dS;, i=1...N.
Then, a > 0 and for all a € [0,1), we have

. (a) o o [2log N loglog N _
N}égoo Ay (0, 832) +da <1 o \/ S o NI 0.

log N/d'/3—0

— NB : —da = —log E(exp(—0+/dS}))
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Main result in the approximate log-normal case (cont'd)
— Let Sy,...,SN be such that :

d
1
Si=—-5N"¢. i=1...N.
o\/EJZ:;g J
Assume (Al). Set a := logE(exp(—&1,1)) and further assume that

logWp ¢(2i) = —da — oV/dS;, i=1...N.
Then, a > 0 and for all « € [0,1), we have

. () ) o 2log N loglog N _
N,légloo AN»d(0’¢’x)+da<1 aV d +0 Vdlog N =0

log N/d'/3—0
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Main result in the approximate log-normal case (cont'd)
— Let Sy,...,SN be such that :

d
1
S = —— i, i=1...N.
i Uﬁ;&,g

Assume (Al). Set a := logE(exp(—&1,1)) and further assume that
log We,¢(z;) = —da — oVdS;, i=1...N.
Then, a > 0 and for all « € [0,1), we have

. () ) o 2log N loglog N _
N,légloo AN=d(9’¢’x)+da<1 aV d +0 Vdlog N =0

log N/d'/3—0

— Weight collapse phenomenon : for all « € [0,1),

A (6, ¢;2) ~ ELBO(Y, 5 2) — £(6;2), as N,d — oo with &5 — 0.

The condition that N should grow at least exponentially with d has been replaced
by the less restrictive yet still stringent condition that N should grow at least
sub-exponentially with d%/3.
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Main result in the approximate log-normal case (cont'd)
— Let Sy,...,SN be such that :

d
1
S = —— i, i=1...N.
i Uﬁ;&,g

Assume (Al). Set a := logE(exp(—&1,1)) and further assume that
log We,¢(z;) = —da — oVdS;, i=1...N.
Then, a > 0 and for all « € [0,1), we have

. () ) o 2log N loglog N _
N,légloo AN=d(9’¢’x)+da<1 aV d +0 Vdlog N =0

log N/d'/3—0

— Weight collapse phenomenon : for all « € [0,1),

A (6, ¢;2) ~ ELBO(Y, 5 2) — £(6;2), as N,d — oo with &5 — 0.

The condition that N should grow at least exponentially with d has been replaced
by the less restrictive yet still stringent condition that N should grow at least
sub-exponentially with d%/3.

— NB : no dependency in « left in the asymptotic regime
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Linear Gaussian example (Rainforth et al., 2018)

Linear Gaussian example (Rainforth et al., 2018)

Set po(2) = N(2;0,1,), po(z|2) = N(z; 2, I;) with § € R?, and
4s(2|m) = N (2; Az + b,2/3 I) with A = diag(a) and ¢ = (a,b) € R? x R%.
Then, we can write

log Wy ¢(2;) = —da — 0\/36’1-, i=1...N.

0+
=r—Az—b

with 02 = £ + 3X% and a = A% + § + § log(3/4), where A = |
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Linear Gaussian example (Rainforth et al., 2018)

Linear Gaussian example (Rainforth et al., 2018)

Set po(2) = N(2;0,1,), po(z|2) = N(z; 2, I;) with § € R?, and
4s(2|m) = N (2; Az + b,2/3 I) with A = diag(a) and ¢ = (a,b) € R? x R%.
Then, we can write
log Wy ¢(2;) = —da — 0\/36’1-, i=1...N.
012 _Ax—b

with 02 = £ + 3X% and a = A% + § + § log(3/4), where A = |

— Set (0,0) = (0%, ¢*) [0* = T~1 S, @y, ¢* = (a*,b) with a* = Jug, b* =&
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Linear Gaussian example (Rainforth et al., 2018)

Set po(2) = N(2;0,1,), po(z|2) = N(z; 2, I;) with § € R?, and
4s(2|m) = N (2; Az + b,2/3 I) with A = diag(a) and ¢ = (a,b) € R? x R%.
Then, we can write

log Wy ¢(2;) = —da — 0\/36’1-, i=1...N.
Otn g

with 02 = £ + 3X% and a = A% + § + § log(3/4), where A = |24zt
— Set (6,¢) = (0, ¢%) [0* = T~ S, 24, ¢* = (a*,0%) with a* = Lug, b =&

® Asymptotic result 1

s 4 () o v (2] - )
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Set po(2) = N(2;0,1,), po(z|2) = N(z; 2, I;) with § € R?, and
4s(2|m) = N (2; Az + b,2/3 I) with A = diag(a) and ¢ = (a,b) € R? x R%.
Then, we can write

log Wy ¢(2;) = —da — 0\/36’1-, i=1...N.
. || 2= - Az—b
with 02 = £ + 3A% and a = A% + § + § log(3/4), where A = 12
— Set (6,¢) = (0, ¢%) [0* = T~ S, 24, ¢* = (a*,0%) with a* = Lug, b =&

® Asymptotic result 1

@y o d 4 1 . (3 (4—a)i(15 —6a)"% — 1 1
Anal0:¢i2) =3 [h’g (5) Tioa s <47(1>] - 21— a)N +O<N>

® Asymptotic result 2

. o [2log N loglog N
1 INGAURY 1-2 =0.
Nodao Nvd(e' ¢32) +da < a d +o Vdlog N 0

log N/d/3 50
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Linear Gaussian example (Rainforth et al., 2018)

Set po(2) = N(2;0,1,), po(z|2) = N(z; 2, I;) with § € R?, and
4s(2|m) = N (2; Az + b,2/3 I) with A = diag(a) and ¢ = (a,b) € R? x R%.
Then, we can write

log Wy ¢(2;) = —da — 0\/36’1-, i=1...N.
. || 2= - Az—b
with 02 = £ + 3A% and a = A% + § + § log(3/4), where A = 12
— Set (6,¢) = (0, ¢%) [0* = T~ S, 24, ¢* = (a*,0%) with a* = Lug, b =&

® Asymptotic result 1

@ 4.y 4 4 1 /3 (4-a)i(15-6a)"F 1 (i)
AMd(e’Qﬁ’z)*Q[l(’g(3>+1,ak’g<4,a>] 2(1—a)N +o N

® Asymptotic result 2

. o [2log N loglog N
1 INGAURY 1-2 =0.
Nodao Nvd(e' ¢32) +da < a d +o Vdlog N 0

log N/d/3 50

— The choice of the variational approximation g, matters a lot!
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Outline

O Numerical experiments
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Linear Gaussian example
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Linear Gaussian example (cont'd)

VR-WAE bound (d =20, gyess = 0.0) VR-WAE bound (d =20, gpess =0.5)
=
—
WC approximation ael HC approsimation
Y — =00
—eer a=0s —an- =05
o 1o 200 %0 0 560 o 0 200 %0 EY 500
N N
VRAWAE bound (d=100, 7,11, =0.0) s VR-AWAE bound (d=100, 7,0, =0.5)
179
20
ot

235
[
RV MC approxmation sl | HE approsimation
-2 asoz
s | | o anos -y | | | r-os
VR-WAE bound (d=1000, 7, = 0.0) VR-IWAE bound (d=1000, 0y, = 0.5)
1002 - -asdo -
1004
-1006 -
% -toos - T a0k
1600 - /
e w0 [
104
WC approximation .
1o —s=04
108 - a=o0s
-esp 1 | i ? 260, ! |
£ 00 300 ED sho o £ 0 ES
N N

Kamélia Daudel (University of Oxford) hallenges and Opportunities



Variational auto-encoder on MNIST
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Variational auto-encoder on MNIST (cont'd)
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Conclusion

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets
Importance Weighted Auto-Encoders: Methodology and Asymptotics.

® We formalized and motivated the VR-IWAE bound
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® Does the weight collapse behavior apply beyond the cases highlighted here?
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bound?
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