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Introduction

• Setting :

1 We consider a model with joint distribution pθ(x, z) parameterized by θ,
where x is an observation and z is a latent variable valued in Rd

2 In that case, the marginal log-likelihood of x is given by

ℓ(θ;x) := log pθ(x) = log

(∫
pθ(x, z)dz

)
• Goal : find θ which best describes the observation x

θ⋆ = argmaxθ ℓ(θ;x)

(more generally θ⋆ = argmaxθ
∑T

i=1 ℓ(θ;xi))

• Problem : finding the optimal θ via maximum likelihood estimation is
in general an intractable optimization problem
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Variational Inference (VI)

• Idea : construct variational bounds, i.e. surrogate objective functions to
the marginal log-likelihood that are more amenable to optimization.

• Common examples :

→ Evidence Lower BOund (ELBO) : rely on a variational probability density
qϕ(z|x) parameterized by ϕ

ELBO(θ, ϕ;x) =

∫
qϕ(z|x) log (wθ,ϕ(z;x)) dz where wθ,ϕ(z;x) =

pθ(x, z)

qϕ(z|x)

with ELBO(θ, ϕ;x) ≤ ℓ(θ;x)

→ Importance Weighted Auto-Encoder (IWAE) bound (Burda et al., 2016)

ℓ
(IWAE)
N (θ, ϕ;x) =

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)

 dz1:N , N ∈ N⋆

with ℓ
(IWAE)
N (θ, ϕ;x) ≤ ℓ(θ;x) and the unbiased Monte Carlo estimate

ℓ
(IWAE)
N (θ, ϕ;x) ≈ log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)

 , zj ∼ qϕ(·|x), j = 1 . . . N
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Training procedure for the IWAE bound

Reparameterization trick z = f(ε, ϕ;x) ∼ qϕ(·|x) where ε ∼ q

Reparameterized gradient estimator (Burda et al., 2016)

∂

∂ϕ
ℓ
(IWAE)
N (θ, ϕ;x) =

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,ϕ(zj ;x)∑N
k=1wθ,ϕ(zk;x)

∂

∂ϕ
logwθ,ϕ(f(εj , ϕ;x);x)

dε1:N

≈
N∑
j=1

wθ,ϕ(zj ;x)∑N
k=1wθ,ϕ(zk;x)

∂

∂ϕ
logwθ,ϕ(f(εj , ϕ;x);x), εj ∼ q, j = 1 . . . N

→ Unbiased SGD steps w.r.t. (θ, ϕ)
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Another interesting variational bound
The Variational Rényi (VR) bound (Li and Turner, 2016) : for all α ∈ R \ {1},

L(α)(θ, ϕ;x) =
1

1− α
log

(∫
qϕ(z|x) wθ,ϕ(z;x)

1−α dz

)

≈ 1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 , zj ∼ qϕ(·|x), j = 1 . . . N

→ Lower bound on ℓ(θ;x) for α > 0 (upper for α < 0)

→ Flexible family of variational bounds indexed by α which recovers the ELBO
when α → 1 (also has ties to the α-divergence)

Training procedure using the reparameterized gradient estimator

∂

∂ϕ
L(α)(θ, ϕ;x) =

∫
q(ε) wθ,ϕ(z;x)

1−α ∂
∂ϕ logwθ,ϕ(f(ε, ϕ;x);x) dε∫

q(ε) wθ,ϕ(z;x)1−α dε

≈
N∑
j=1

wθ,ϕ(zj ;x)
1−α∑N

k=1wθ,ϕ(zk;x)1−α

∂

∂ϕ
logwθ,ϕ(f(εj , ϕ;x);x), εj ∼ q, j = 1 . . . N

with positive empirical results

Recovers SGD with the IWAE bound for α = 0 (resp. ELBO for α = 1)
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Another interesting variational bound (cont’d)

L(α)(θ, ϕ;x) =
1

1− α
log
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1−α dz

)
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1−α∑N

k=1wθ,ϕ(zk;x)1−α

∂

∂ϕ
logwθ,ϕ(f(εj , ϕ;x);x), εj ∼ q, j = 1 . . . N

→ However

1 The VR bound can only be estimated using biased MC estimators

2 The VR bound does not recover the IWAE bound when α = 0

3 No theoretical justification as SGD with the VR bound resorts to biased
estimators on top of the reparameterization trick (unless α ∈ {0, 1})
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∂ϕ
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→ However

1 The VR bound can only be estimated using biased MC estimators

2 The VR bound does not recover the IWAE bound when α = 0
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An idea

• Li and Turner (Theorem 2, 2016) further looked into the biased
approximation of the VR bound

L(α)(θ, ϕ;x) =
1

1− α
log

(∫
qϕ(z|x) wθ,ϕ(z;x)

1−α dz

)

≈ 1

1− α
log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 , zj ∼ qϕ(z|x), j = 1 . . . N

• They investigated the expectation of the biased MC approximation, i.e.

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

dz1:N

e.g. they showed that it is non-decreasing with N when α ≤ 1.

• Question Could this expectation be seen as a variational bound?

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets

Importance Weighted Auto-Encoders: Methodology and Asymptotics.
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The VR-IWAE bound

For all α ∈ [0, 1) and all N ∈ N⋆

ℓ
(α)
N (θ, ϕ;x) :=

1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

The VR-IWAE bound is a lower bound on the marginal log-likelihood that

1 Can be estimated using unbiased MC estimators

2 Recovers the IWAE objective function when α = 0

3 Leads to the same SGD procedure as the VR bound in the reparameterized
case, but this time using unbiased estimators

∂

∂ϕ
ℓ
(α)
N (θ, ϕ;x)

=

∫ ∫ N∏
i=1

q(εi)

 N∑
j=1

wθ,ϕ(zj)
1−α∑N

k=1wθ,ϕ(zk)1−α

∂

∂ϕ
logwθ,ϕ(f(εj , ϕ))

 dε1:N .

≈
N∑
j=1

wθ,ϕ(zj)
1−α∑N

k=1wθ,ϕ(zk)1−α

∂

∂ϕ
logwθ,ϕ(f(εj , ϕ)), εj ∼ q, j = 1 . . . N
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The VR-IWAE bound (cont’d)

→ The VR-IWAE bound is the theoretically-sound extension of the IWAE
bound originating from the α-divergence VI methodology

→ It provides theoretical guarantees behind various VR-bound gradient-based
schemes previously proposed in the α-divergence VI community

→ Other notable advantages of the VR-IWAE bound :

• Setting α > 0 instead of α = 0 (IWAE bound) can improve on the SNR for
the reparameterized estimated gradients of the VR-IWAE bound

SNRθℓ = Θ(
√
N)

SNRϕℓ′ =

{
Θ(
√

1/N) if α = 0 (Rainforth et al., 2018),

Θ(
√
N) if α ∈ (0, 1).

• The doubly-reparameterized gradient estimators of the IWAE generalize to
the VR-IWAE bound

→ Motivates the use of α ∈ [0, 1) in practice
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Overview
→ Quantity of interest : variational gap

∆
(α)
N (θ, ϕ;x) := ℓ

(α)
N (θ, ϕ;x)− ℓ(θ;x), α ∈ [0, 1)

=
1

1− α

∫ ∫ N∏
i=1

qϕ(zi|x) log

 1

N

N∑
j=1

wθ,ϕ(zj ;x)
1−α

 dz1:N

where wθ,ϕ(z1;x), . . . , wθ,ϕ(zN ;x) are the relative weights : for all z ∈ Rd,

wθ,ϕ(z;x) :=
wθ,ϕ(z;x)

EZ∼qϕ (wθ,ϕ(Z;x))
=

wθ,ϕ(z;x)

pθ(x)
=

pθ(z|x)
qϕ(z|x)

,

NB : we will drop the dependency in x in wθ,ϕ(z;x) for convenience

→ Two complentary studies

1 When N → ∞ and the dimension of the latent space d is fixed

This analysis will be tailored for low to medium dimensions settings

2 When N, d → ∞ with (i) logN
d → 0 or (ii) logN

d1/3
→ 0

This analysis will be tailored for high-dimensional settings
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N goes to infinity and d is fixed

→ Maddison et al. (2017) followed by Domke and Sheldon (2018) looked into
the variational gap for the IWAE bound (α = 0)

Informally, Domke and Sheldon (2018, Theorem 3) states that

∆
(0)
N (θ, ϕ;x) = − γ20

2N
+ o

(
1

N

)
where γ0 is the variance of the relative weights, i.e.

γ20 := VZ∼qϕ(wθ,ϕ(Z))

→ Comments :

• N is very beneficial to reduce ∆
(0)
N (θ, ϕ;x) (goes to 0 at a fast 1/N rate)

• Question What about ∆
(α)
N (θ, ϕ;x), α ∈ [0, 1)?
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Main result

Theorem

Let α ∈ [0, 1), denote w
(α)
θ,ϕ(z) = wθ,ϕ(z)

1−α/EZ∼qϕ(wθ,ϕ(Z)1−α) for all z ∈ Rd

and γ2α = (1− α)−1VZ∼qϕ(w
(α)
θ,ϕ(Z)). Then, under “some conditions”, we have:

∆
(α)
N (θ, ϕ;x) = L(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
.

→ Two main terms :

1 A term going to zero at a fast 1/N rate that depends on γ2α

2 An error term L(α)(θ, ϕ;x)− ℓ(θ;x) [decreases away from 0 as α increases]

The hyperparameter α balances between these two terms meaning that a proper
tuning of α may be beneficial in practice

→ “some conditions”

• generalize the conditions from Domke and Sheldon (2018)

• do not get more restrictive as α increases, motivates α ∈ (0, 1)

• one of them controls γ2α
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Main result (cont’d)

Theorem

Let α ∈ [0, 1), denote w
(α)
θ,ϕ(z) = wθ,ϕ(z)

1−α/EZ∼qϕ(wθ,ϕ(Z)1−α) for all z ∈ Rd

and γ2α = (1− α)−1VZ∼qϕ(w
(α)
θ,ϕ(Z)). Then, under “some conditions”, we have:

∆
(α)
N (θ, ϕ;x) = L(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
.

→ To the best of our knowledge, first result shedding light on how α may play
a role in the the success of α-divergence VI.

→ Question Can we find some limitations to this approach?
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A key example

Log-normal distribution of the relative weights

Let σ > 0, S1, . . . , SN be i.i.d. normal r.v and assume that the distribution of
the relative weights wθ,ϕ(z1), . . . , wθ,ϕ(zN ) is log-normal of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

Then, for all α ∈ [0, 1),

∆
(α)
N (θ, ϕ;x) = L(α)(θ, ϕ;x)− ℓ(θ;x)− γ2α

2N
+ o

(
1

N

)
with

L(α)(θ, ϕ;x)− ℓ(θ;x) = −ασ2d

2
and γ2α =

exp
[
(1− α)2σ2d

]
− 1

1− α
.

→ Our theorem may not capture what is happening in high dimensions
i.e. we may never use N large enough in high-dimensional settings for the asymp-
totic regime to kick in

→ Question Analysis as both d and N go to infinity? ∆
(α)
N,d(θ, ϕ;x)
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N, d → ∞ with either logN
d → 0 or logN

d1/3
→ 0

→ Key intuition : it is typically possible to approximate the distribution of the
relative weights by a log-normal distribution of the form

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, Si ∼ N (0, 1), i = 1 . . . N.

→ Theoretical study in two steps :

1 Log-normal case : d,N → ∞ with logN
d → 0

2 Approximate log-normal case : d,N → ∞ with logN
d1/3

→ 0
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Main result in the log-normal case

Theorem

Let S1, . . . , SN be i.i.d. normal random variables. Further assume that

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, i = 1 . . . N.

Then, for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d→0

∆
(α)
N,d(θ, ϕ;x) +

dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))
= 0.

→ Previously, we had

∆
(α)
N,d(θ, ϕ;x) = −α · σ

2d

2
−

exp
[
(1− α)2σ2d

]
− 1

2(1− α)N
+ o

(
1

N

)
• While increasing N decreases the variational gap for N large enough, it

does so by a factor which is negligible before the term −dσ2/2

• This time, the term −dσ2/2 does not depend on α

→ Weight collapse phenomenon : for all α ∈ [0, 1),

∆
(α)
N,d(θ, ϕ;x) ≈ ELBO(θ, ϕ;x)− ℓ(θ;x), as N, d → ∞ with logN

d → 0.
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Gaussian example

Gaussian example

Set pθ(z|x) = N (z; θ, Id) and qϕ(z) = N (z;ϕ, Id), with θ = 0 ·ud and ϕ = ud,
where ud is the d-dimensional vector whose coordinates are all equal to 1. Then

logwθ,ϕ(zi) = −σ2d

2
− σ

√
dSi, Si ∼ N (0, 1), i = 1 . . . N

with σ = 1.

• Asymptotic result 1

∆
(α)
N,d(θ, ϕ;x) = −α · σ

2d

2
−

exp
[
(1− α)2σ2d

]
− 1

2(1− α)N
+ o

(
1

N

)
• Asymptotic result 2

lim
N,d→∞

logN/d→0

∆
(α)
N,d(θ, ϕ;x) +

dσ2

2

(
1− 2

√
2 logN

dσ2
+

1

1− α

2 logN

dσ2
+O

(
log logN√
d logN

))
= 0.

→ Weight collapse phenomenon might occur even for simple examples!
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Empirical verification
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Empirical verification (cont’d)
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Main result in the approximate log-normal case
(A1) For all i = 1 . . . N ,

1 ξi,1, . . . , ξi,d are i.i.d. random variables which are absolutely continuous
with respect to the Lebesgue measure and satisfy E(ξi,1) = 0 and
V(ξi,1) = σ2 < ∞.

2 There exists K > 0 such that:

|E(ξki,1)| ≤ k!Kk−2σ2, k ≥ 3.

→ Let S1, . . . , SN be such that :

Si =
1

σ
√
d

d∑
j=1

ξi,j , i = 1 . . . N.

Theorem

Assume (A1). Set a := logE(exp(−ξ1,1)) and further assume that

logwθ,ϕ(zi) = −da− σ
√
dSi, i = 1 . . . N.

Then, a > 0 and for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0.

→ NB : −da = − logE(exp(−σ
√
dS1))
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Main result in the approximate log-normal case (cont’d)
→ Let S1, . . . , SN be such that :

Si =
1

σ
√
d

d∑
j=1

ξi,j , i = 1 . . . N.

Theorem

Assume (A1). Set a := logE(exp(−ξ1,1)) and further assume that

logwθ,ϕ(zi) = −da− σ
√
dSi, i = 1 . . . N.

Then, a > 0 and for all α ∈ [0, 1), we have

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0.

→ Weight collapse phenomenon : for all α ∈ [0, 1),

∆
(α)
N,d(θ, ϕ;x) ≈ ELBO(θ, ϕ;x)− ℓ(θ;x), as N, d → ∞ with logN

d1/3
→ 0.

The condition that N should grow at least exponentially with d has been replaced
by the less restrictive yet still stringent condition that N should grow at least
sub-exponentially with d1/3.

→ NB : no dependency in α left in the asymptotic regime
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Linear Gaussian example (Rainforth et al., 2018)

Linear Gaussian example (Rainforth et al., 2018)

Set pθ(z) = N (z; θ, Id), pθ(x|z) = N (x; z, Id) with θ ∈ Rd, and
qϕ(z|x) = N (z;Ax+ b, 2/3 Id) with A = diag(ã) and ϕ = (ã, b) ∈ Rd × Rd.
Then, we can write

logwθ,ϕ(zi) = −da− σ
√
dSi, i = 1 . . . N.

with σ2 = 1
18 + 8

3λ
2 and a = λ2 + 1

6 + 1
2 log(3/4), where λ =

∥∥ θ+x
2

−Ax−b
∥∥

√
d

→ Set (θ, ϕ) = (θ⋆, ϕ⋆) [θ⋆ = T−1
∑T

t=1 xt, ϕ
⋆ = (a⋆, b⋆) with a⋆ = 1

2ud, b
⋆ = θ⋆

2 ]

• Asymptotic result 1

∆
(α)
N,d(θ, ϕ;x) =

d

2

[
log

(
4

3

)
+

1

1− α
log

(
3

4− α

)]
− (4− α)d(15− 6α)−

d
2 − 1

2(1− α)N
+ o

(
1

N

)

• Asymptotic result 2

lim
N,d→∞

logN/d1/3→0

∆
(α)
N,d(θ, ϕ;x) + da

(
1− σ

a

√
2 logN

d
+O

(
log logN√
d logN

))
= 0.

→ The choice of the variational approximation qϕ matters a lot!
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Linear Gaussian example (cont’d)
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Variational auto-encoder on MNIST
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Variational auto-encoder on MNIST (cont’d)
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Variational auto-encoder on MNIST (cont’d - 2)
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Conclusion

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets

Importance Weighted Auto-Encoders: Methodology and Asymptotics.

1 We formalized and motivated the VR-IWAE bound
• Theoretically-sound extension of the IWAE bound (α = 0)
• Provides theoretical guarantees behind various VR bound-based schemes

proposed in the α-Divergence VI community
• Enjoys other additional desirable properties of this bound (SNR,

doubly-reparameterized)

2 We provided two complementary analyses of the VR-IWAR bound
• Shed light on the conditions behind the success or failure of the VR-IWAE

bound methodology
• Encompass the case of the IWAE bound

3 Empirical verification of our theoretical results

→ Further work:

• Does the weight collapse behavior apply beyond the cases highlighted here?

• How does the weight collapse affect the gradient descent procedures?

• Can we further use the fact that the VR-IWAE bound extends the IWAE
bound?
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Kamélia Daudel (University of Oxford) · Challenges and Opportunities in Scalable α-divergence Variational Inference 37 / 37



Conclusion

Daudel, Benton, Shi and Doucet (2022). Alpha-divergence Variational Inference Meets

Importance Weighted Auto-Encoders: Methodology and Asymptotics.

1 We formalized and motivated the VR-IWAE bound
• Theoretically-sound extension of the IWAE bound (α = 0)
• Provides theoretical guarantees behind various VR bound-based schemes

proposed in the α-Divergence VI community
• Enjoys other additional desirable properties of this bound (SNR,

doubly-reparameterized)

2 We provided two complementary analyses of the VR-IWAR bound
• Shed light on the conditions behind the success or failure of the VR-IWAE

bound methodology
• Encompass the case of the IWAE bound

3 Empirical verification of our theoretical results

→ Further work:

• Does the weight collapse behavior apply beyond the cases highlighted here?

• How does the weight collapse affect the gradient descent procedures?

• Can we further use the fact that the VR-IWAE bound extends the IWAE
bound?

Kamélia Daudel (University of Oxford) · Challenges and Opportunities in Scalable α-divergence Variational Inference 37 / 37


	Introduction
	The VR-IWAE bound
	Theoretical study of the VR-IWAE bound
	Overview
	First study
	Second study

	Numerical experiments
	Conclusion

