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Introduction
▷ Variational Inference with the exclusive KL and a parametric variational family of the form

Q = {q : y 7→ k(θ, y) : θ ∈ T}
has some known limitations : (i) the exclusive KL leads to posterior variance underestimation and has
difficulty capturing multimodality (ii) Q can be too restrictive to capture complex posterior densities.

▷ Idea: Consider the α-divergence, let Θ = (θ1, . . . , θJ) ∈ TJ , SJ be the simplex of dimension J > 1 and

Q =


J∑

j=1

λjk(θj , y) : λ ∈ SJ

 .

Why is that a good idea? (i) The α-divergence recovers the exclusive KL when α → 1 and permits to bypass
the issues of the exclusive KL when α < 1 (ii) optimising the α-divergence w.r.t the mixture weights λ
expands the traditional parametric variational family and enables to select the mixture components
according to their overall importance in the set of component parameters.

How to do it? The Power Descent algorithm from [1] carries out the mixture weights optimisation re-
gardless of how Θ is obtained. This gradient-based procedure (it notably involves a learning rate η) is
defined for all α ̸= 1 and it outperforms the Entropic Mirror Descent when α < 1 as d increases.

▷ Problems :
1. The convergence result for the Power Descent in [1] assumes the existence of the limit when α < 1.
2. The Power Descent is defined for α ̸= 1.
3. No convergence rate is available for the Power Descent when α < 1.

Numerical experiments
The Power Descent and the Rényi Descent are gradient-based algorithms. In practice, the gradients are
approximated by using Monte Carlo methods. Since these algorithms act on the mixture weights λ
only, they are paired up with an Exploration step that updates the components parameters Θ in our
numerical experiments.

▷ In dimension d = 16 with an increasing number of Monte Carlo samples M ...

▷ In dimension d = 100 with an increasing number of Monte Carlo samples M ...

These figures permit us to illustrate the newly-found proximity between the Power Descent (PD) and
the Rényi Descent (RD), as opposed to the Entropic Mirror Descent (EMD) considered in [1].

Discussion
In their stochastic versions, the Power Descent applies the function Γ(v) = [(α − 1)v + 1]η/(1−α) to an
unbiased estimator of the gradient, while the Rényi Descent applies the function Γ(v) = e−ηv to a biased
estimator of the gradient.
Finding which approach is most suitable between biased and unbiased α-divergence minimisation is
still an active area of research in Variational Inference. Our work sheds light on links between unbiased
and biased α-divergence methods beyond the framework of stochastic gradient descent, as both the
unbiased Power Descent and the biased Rényi Descent share the same first-order approximation.
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Contributions
We make the three following contributions:

1. We prove the full convergence of the Power Descent towards the optimal mixture weights when
α < 1 [Theorem 2].

2. We investigate the extension to the case α = 1 and show that we obtain an Entropic Mirror Descent
performing exclusive KL minimisation [Proposition 1].

3. We introduce the Rényi Descent, an algorithm closely-related to the Power Descent that converges
at an O(1/N) rate when α < 1 [Theorem 3].

The Rényi Descent :

• shares the same first-order approximation as the Power Descent,

• can be linked to Entropic Mirror Descent steps applied to the Variational Rényi (VR) Bound from
[2] (hence the name!),

• differs from the Entropic Mirror Descent considered in [1] as it uses adaptive learning rates. This
shows that a deeper connection runs between Power Descent and Entropic Mirror Descent beyond
the one identified in [1].

NB : Our work contributes towards deriving convergence results of variational objective functions,
with the particularity that we focus on mixture weights updates in the optimisation procedures, which
are carried out for general choices of kernel k.


